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PART I.

INTRODUCTION

One of the most pervasive-and basic characteristics of the
f

world we live in is change. Current times are characterized byrates

.6f,change unprecedented in recorded history. Everything is changing,

..faster a faster all the time. Electronic devices are getting

smaller
.

and smaller, the populatian,is growing larger and larger,,and
A

prclikOks of all kinds are becoming more and more complex.

Many of these changes are reflective of a.basic Shift in the

kinds of processes engaged in by people living in many-parts of'the

world -- a shift in communication style. This shift is fed by the
,

continued development and advancement of new communication technologies:

Thus, easy access to relatively inexpensive telephone equipment in-.

creases the amount of communication between distant areas, is much the

same way railroads, and later, Airplanes, increased the amount of cow-

munication by making rapid,mail service poSsible.

:Recenrresearch (Parker, 1975) suggests that we are becoming
;

an information society, -where the primary commodity. that is,processed

is, information,, rather than the industrial matter and energy that
. ,

characterized- the pre-information society..

Not only is there more communication, but also,is there .

. faster communication. Where it used to take weeks. to get &letter
lw,

from San Francisco toNew York; itis now Possible, for moat -of the

World to watch men walking on the snriace.,of the moon, with a delay-

dictated only by the speed of light.

As educational levels rise and political barriers drop, more

and, more people gair the ability to interact in the context of the

emerging world society. Where in the past, local And national societies

were forced to be independent .of one ,another by a lack of communication

facil v togs, they are now tied ether into what isfast becoming a'

sin iegrated network of interdependent units, where the boundaries

are becoming more and more mere political or economic considerations,

instead of natural geographical or racial barriers.
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What it the result of this increased interdependence? Gerard-.1

p.'53) says that "the more the members of the class igteract

rather than Coexist, the more does the superordinate.group become a

true individual.rather than a Collection of'Ordingte individuals."

Instead of a wor/d.A-separate, independent nations, we are moving in

the direction of a single world society, -composed of smaller interacting
t._

national or regional groups.

This shift is not evident only on a global scale. The ten-

dency in the American economic system has.been to move away from

mechanical processes and toward information processes. We are becoming

more and lore reliant on information, as),the total volume of informa-

tion exchanged in a given unit of time is growing rapidly as communica-

tion and information technologies advance. One implication of thid

growth is a greater interdependence among the segments of the'political-

- economic system. Cases where the effects of an apparently local change

reverberate through the entire system ore being seen with increasing

regularity. It is ovious that the additionof more communication

links_is changing the fundamental nature of the system.

The nature of this change is becoming a legitimate topic for
111

study from a number of viewpoints, as more and more problems are being

recognized as system"problems which can only be understood in the con-

text of-the larg r system. This new viewpoint has been effective in

a largefi4Mbe of traditional fields -- economics, environmental studies,

transportation, and education, to name a few. In spite of the vast

differences in their topic areas, there seems tote a growing concensus

that researchers and theoreticians feel a need to understand t#e
.

genetal properties of-complex systems.

. +This need.is being translated into research. The "systems

approach" is a phrase:heard with'incrseasing regularity-at professional

meetings and'seen-more and more..in journals and, recently, tektbooks.

An unmistakable sign of the arrival of the systems'approach

occurrence in popular fiction.

ducipg man-made systems, with a

dangers of uncontrolled complex

There is even a novel about self- repro-

title that suggests one of the potential

systems -- Mechasm (Sladek, 1968).

1 4
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There have been many papers with the phrases "A Systems

Analysis of" or "A Systems Approach to" in their title. There is a.

large body of literature made of uses or applications of systems

thinking. There is also a body of writing about the systems approach

in general, theoretical terms. There is much less, however, in the

way of systems methodologies. This dissertation presents an attempt

to bridge the gip from systems theory to spnems reseazlph. The bridge

takes the form of a research approach -- a methodology, a guiding

paradigm that structures and leads the research endeavor.

The dissertation is divided into four parts. The first re-

views prior conceptual and operational approaches to the problems. A

new' conceptualization is developed 4n the second part, and a new,

operational method is presented in the third. There are 'two chapters

in the fourth part. In the first we present an;example of the new

method of analysis. In the second the new method is examined for

Cs potential to aid in the advancement of theory and the guidance

of research in the general area.
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CHAPTER ONE

THE MECHANISTIC AND ORGANISMIC MODELS OF REALITY

"Thus the classical picture 'works' where it is
applicable. And because of its sudcess it has a
terrible deductive power over the human mind."
(Rapoport and Horvath, 1968, p. 72)

..,. is not the understanding of any complexity
to be gained by analyzing it further and further
'into.its constituent parts?" (Rapoport and Horvath;

1968, p. 72)

"Ail the king's horses and all the king's men
couldn't put liumpti together again." (Mother

Goose) `

Until only recently man's approaches to the study of man have

..../

been based upon two major conceptual models -- the mechanism (the

.mechanical device Which obeys the laws of physics) and the organism
o .. .

(the living,- growing, evolving plant or animal): Buckley notes that

d

.1

-"sociological theory has Veen living for some time off the intellectual.

capital of previous' centuries" (1967, p. He goes on to suggest

that this dependence on the.traditional conceptual structures isithe

basis for the "sizeable chorus of criti& and skeptics" of the great
.(

bulk of empirical research conducted in the last decades. The diffi-

culty, he say?, "lies in the fact that current dominant theory is built

on mechanical-and organic (more exactly,, organismic) systems models ,.

laid down auiing previous centuries" and which are quite indppropriate
.

in dealing with the kinds of,syitims we are interested in (1967, p.

Deu sch (1968) argues-that the'use of these models in attempt-

ing to udderst d s9cial situations was consistent with advances in the

physical and natural sciences, where these models. were very successful.
.N%

<1. According to'Monge:

4

vo

t.
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The breakthrough by the*natural sciences in developing
viable conceptualizations inspired social scientists
to adopt modell based on the natural science conceptu-
alizations ofthe world, all of which was done in hopes
of achievihi-similar success inexplaining human be-
havicif;thas.,'physical and biological science silccess.
bred-social. science imitation: Unfortunately, the
hoped-fot success has never been realized; social and
communication science are still without a viable
model of hunan:behavior.(1973, p. 7).

C.
t

Of course, there have been many models proposed for the communication

. process since the seventeenth and nineteenth centuries, When the

mechanistic and organismic models were first applied to the study of

man.' These include the Lasswell model of "Who says What in Which

Channel to Whom with What Effect" (1948); and the Shannon-"and Weaver

model of 1949,as adapted by Beilo In his SMCR model (1960), which

focused on-the source, message, channel, and receiver (in parallel to

Lasswell's model). McCroakey (1968) added a feedback loop,,and Dance

(1967),drew the model ale a helix instead of a circle, to suggest the

passage of time.
-7.

5

Monge suggests that a review of other models, such as 511

Westley-MacLean,(1957) conceptual model, the Becker (1968)mcfmic

model, and'thelarnlund (1970) transactional model, among others, would

be ...

... fruitless, for despite their proliferation,
virtually all contemporary theories of communication
lack the-sophistication necessary to be classified
as even mechanistic or organismic, much less as
systems models. Rather they tend-to be pictorial

c:or verbal descriptions a poorly conceptualized .

vaguely defined phenomenon (1973, p. 10).

If we examine the literature of the social sciences, we

would seesthat the vast bulk of the research that has been done Nast

centered Around the individual. In the relatively much smaller volume

of literature that is concerned with social systems (which may be as

11.

small ascii simAe so-person dyad or as large as an entire civilization), 04

4.
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then mechanical_ and organismic models of reality are basic to:most of

the research that has been done.

This is

cal or organismic

"Theory of Linear

not to say that rivarchers consciously usedvechani-

analogies as, for example, Woelfel (1970) did in his

Force Aggregation," where messages and the self-

concept are related by Newton's_Second Lawyhich-equates force with the

prOduct of massand,acteleration. Rather,'social scientists incorpo-
V$

rated into theirs thinking at a very basic level certain fundamental

assumption's concerning "the way things are" consistent with those upon

which thetechanistic and organismic models were based. It is thus the

use of these basic assumptions Oat identifies the later research as

fundamentally mechanistic or organismic: Both of these basic approaches

are severely limiting in that:
/

(1) They restrict the kinds of situations or phenomena that
can-be identified and utilized inscientific explanation,
because they fail to consider adequately, the complexities
of the processes of observation and description.

They restrict 61e kinds of logical "moves" that can be
made in going/ from raw data to final interpretive \tate-
ment, because -they fail to -recognize the_ relation ot\
data and descriptions to the reality..,being studied.

'They thus restrict the kinds Of, theory that can be put
forth, both ecause of the expressive difficultied men-
tioned in (1) and because of the strategic logical diffi-
culyies mentioned in ,(20): Furthermore, the simplistic
nature of these approaches practically guarantees a
parallel simplicity iq theory building,, as theloasic,

model contain no hints of the kinds of caMplexify that
can e seen in hierarchical information processing
syst s, and thus do not suggest how these systems
sho ld be approached.

,Let us eview the two basic motes and see how they lead to

%nthe difficulties.m tioned above.

L
)

1
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THE MECHANIgT1C-MODEL-iND:THE CLASSICAL. ANALYTIC MODEL

Within the current dominant paradigm, scientific assertions

7

take the form of "if ao ... then so" statements, which are usually

interpreted as assertions of causality. Indeed,."the prediction pare-
,

digmof science interprets all scientific assertions as assertions of

valid causality 'relations" (Rapoport, 1968, p. Mathematical

physics, a:particularly'successful and highly developed branch of

natural science, uses a more powerful type'clif a sertion than the causa-

lity statement -- the equation -- in its riptioaa of dynamic rela-

tionships between. entities across time. In the mathematical language

of systems of equations, a single statement will embody an infinity of

"if so ... then so" statements, as it is expressed in continuous,
4

rather than'discrete, terms. In addition, in tfre language of slathe-
r

matics, it is possible to efficiently deal with situations where there

are complex and even recursive networks of causal relationships, all

interacting with one another over time.

The connection between the langUage of equations and
the 'vu'lgate' language of causality is established
by holding constant all of variables except one .
pair. This enables us to say: 'Othersthings being
equal, the thinner the bottom of the kettle, the
sooner the water will boil'; or 'Other things being,'
equal, the greater the atmospheric pressure, the
longer it will take to bring the water to a boil,'
etc. Thus, 'common-sense' caUsal.relations are in-
cluded,in the equation.and ire deduced by holding
constant all the variables except thoie of interest.

In assuming'that the equation in which all the
causal factors were cbmbihed Was given, we belie,
of course, assumed that all of the relations were
,known at once. In actuality they areoften deter-
minecone by .one.. These separate determinations'
are made possible by the method,of controlled experi-
ment. In order to bring out some causal. relation-free

. of disturbances by other factors, we deliberately try
.

to-hold constant all those ctors suspected of
having some influence. Thus the basic assumption
underlying'the empirical stud of,physical pheno-
mena ifthat we can eliminat all diiturbing pheno-
mena and study the relation f interest alone.
-Next, by establishing se lairs'of such relations,
we can (we assume) combine th into a more general

.1
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causality law, that is, an equation in which all the
contributingefactors appear as variables. This is
called the analytic method. It has been phenomenally'

in the physical sciences (Rapoport, 1968,
a. p. %iv).

$

AnalYSis'is,an attempt to understand, scomplexity by
'eXamining its constit ent.parps. The parts being
simpler.;,they are supposedly are amenable to under-

. standlng. The idea of analysis, then, is to. under -
stand the Working of the parts .... The implied
hope is that it is possible to 'build up' the under--
standing of a.complexity by 'superimposing' the.'
Workings of the various parts (Rapoport and'Horvath,
1968, p. 87).

The central ideas here, namely (1) that we can eliminate all
!

disturbing phenomena aha study the relation 'of interest alone, and

(2) that we can combine descriptions of pairs of relations'established,,

by'studying isolated aapetts of the situation into more general causality

laws, are unquestionablyMeChanistic in tone. Recall the status, of

scientific thought when the,classical Mmechanise'first led tosuccess-

ful prediction of future events with Newton's description of the solar

system.

.4(

According to Deutsch (1968, p. 388), mechanistic analogies

were quickly appliedto deacriPtidgs of government by 'Hobbes, Locke,

Montesquieu, and'de is Metirie. Tom Paine extended them to God-as the

"first mechanic, and Schiller spoke of the "watchspring of-the universe."

This extension of the idea of mechanism, from the experience of newly

developed Pumps and clockworks, says Deutsch (1968, p. 388), to a

general description of-reality, was encouraged by Newton's success with.

mechanical descriptiona of gravitational astronomy.

CLASSICAL MECHANISMS

The physical Concepts of space, time, attraction,
inertia, force,,A)oWer -- which must be recognized
as anthropomorphisms originally borroWed from every-
day human experience "1-- were borrowed back in their
new connotative attire and applied to man.and
society. Thus we find conceptions of' moral or

20
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social space in which social events_occur; position
in social space, and &system of social.cpordinates
defining man:s,Position in it; sOcialsprOcesses as

results of the 'gravitation, or attraction and
inertia of individualsoand groups,°the latter re-
garded asa'system in an equilibrium of centrifugal
and centrifugal forces. -Social Organization, power,'
and authority Were resultants of thepressure0*
'social'atbmsil and 'molecules': hence arose 'social
statics' or a theory of social equilibTium.analogous,

.

to statics in physical mechanics, and 'social, dyna-'
mics' involving motion or change as a function of
Einieaneepace expressible by various mathematical
curves (Buckley, 1967, p.

:

The classical concept or model of mechanism-implied-

Ica)

the notion ofa whole which wig7rompletely equal to
the sum of its parts; which could be'run i reverse;
and whichwould behave in exactlx:ident 1 fashion
no matter'how often those parts Were disassembled
and put together again, and, irrespective of, the se -

.quence in which the disassembling or, .reassembling
would take place. It implied consequently the AL
notion that the parts were never significantly
modified by each other, nor bYstheirvown"past, and
that each part once placed in its appropriate posi-.

, tion, with its appropriate-momentum would stay
. exactly there and continue tdqulfill its completely

and uniquely determined function (beutsch, 4,68i4
p. 388).

It is easy to see how the Classical analytic method is well

suited tovthe study of mechanisms, and why it should be chosen to guide.

the study of e reality thought to behaveas a mechanism. In fact, the

mechanistic model was vei successful in the physical sciences,land

the analytic method was :the one that allOwed this success. As bng as

the'Systeis being studied'Were fairly simple, and.aslong as the
A

measurement techni4ues remained relatively insensitive to discrepancies

between the reality andthe.model, the analytic technikueworked well:

`it was possible to take the-more complex situations apart into simpler

situations that could be easily ,understood. The results of this piece-
,

meal analysis could then be combined togive a more or less adequate

deseriPtionif the whole. AdeqUate, that is, until the reality being
.

studied failed to fit'the mechanistic model to such an extent that the

.discrepancies could not be 'ignored.

C.



www.manaraa.com

o
a

0\/ io
THE MEC ISM FAILS: DIALECTIC

As machines became more complex, so did the;ks of inter-:
.

relationships among theirparts. The effects of the past hiitoiy of
. .

Machines became appreciable, is the greiter complexity.. resulted. in

machines whose perfotmance was dependenton precise intermeshidg of

y partsowhich were subje t -ar. Furthermore., attempts to

apply. this approach to the s udy of animals and, in particular; man*

were met with disappointment more often,than: stIccesa. In the face of
A

repeated failures, the first assumption made by reSearchers was probably

that their measurement or analysis techniques were imprecise. It was

easier to improve these areas.-thah to construct a new model of reality,

and so these were the areas where improvements were. made.4witness the 7

current state of statistical methods.-- complex regre'ssion techniquei ,r*

and sophisticated multidimensional scaling routines).

In ,some areas of investigation, the old, methods in their ex-
,

tended versions seemed to work. In others, however, they continued to

fail. The classical analytic method would not work wheh'the situation : ,

i, , 0

un4er investigation involved closed causal.loopss as,, for exampli------
. q

..
all systedWiali; operating feedback loops. This was eapetially the

case wititliving,processes. .

living processes are'not governed .=,

Views on why thiS is soldifferedi According tone ,

!//view, called vitalism, the extension- is in principle ,

/L impossible, because liv
by the same laws 415 nonliving processes. According'
to,the opposite views, variously called mechanist,,',
physicalism, or reductionism,the difficulty lies, nOt,' .v

in an irreducible 94ference between physical andv..:, '.

biological laws but only in thetremehdous complexity , #...o,

of living processes. The reductionistsassumed ! N
*
t;''

.

implicitly that if we knew enough about howlititag. ,

beings were put together, we could write down the,
t,

equations that govern their behavior; and:-,ifi ..
were clever enough in mathematics, we coulditolve !

the equations and so determine the itrije4ories' ,

. f of behaVidr (Rapoport, 1968, p. xv). P
..-

O

4

/

There, were thus two responses to the failure of-the mechanistic model.

The.methanists said essentially that their model was still sdequite.

Aw



www.manaraa.com

0

.
)

4
.

. ,

, 11.

'le
More careful'and extensive analysis (in .the classical sense) of complex.

s stems (such as animals and man) was all that Was heeded. Th:e controlled

e1periment was still the preferred- investigatory strategy
1 .

The organists,- on the other hand," said.thaf in living systems

the wholelapproach taken by the mechanists was doomed to failure.at ther.,. ,

start, because organisms are not mechanisms -- they areftadamentally4
;.: 1.

different, and this difference demands a different approa0 for under-

standing'. It was almost ts if all of redity were dividid into two (
-, 0

v/ mutually exclusive classes -1- mechanisms and organisms.

;

Accoyding to the classical,O.ew, an 'organism' is'
unafialyzable,, at least in part.' It cannot betaken
apart an put together again without damage., ;Aa,.
Wordsworth put it, 'We murder'to dissect.' The
parts )flit classical organism, insofar as they can,
be identified at all, not only retain the functions
which they hive been assigned but in fact cannot'be
put to any other functions (except within n4 row
limits of 'de-differentiation' which were oaten
ignored), without destroying the organism. The
classical organism's behavioeftib irreversible% It

has a significant past and a history -7- two things

iP which the classical mechanism lacks --,but it is

.
only half historical because it was believed, io
follow its own peculiar 'organic law' which governs
its birth, maturity; an i death and cannot betna
-lyzed in terms of clearly identifiable 'mechanical'.,
causes (Deutsch, 1968, p. 389).'

4

The classical'organismic approach thus seems to deny all the

assumptiOns,of the mechanistic viewpoint. A purely organismic research

strategy would do the opposite of the mechanistic approach. Where a

me6haids174ould.take apart a compfersystem tosee how its parts worked

in hopes of gaining an' understanding of the whole, the organist would

deny this as a viable Striegy. The reason.for a given system's be-

haat& vould be the system" -- the origins of behavior are to be found

in the wholeness of the pystem, and are not reducible to the constituent

parts of the'system. Qtherwise, the organism woad be reduciblewto a
. .

mechanism, and this state of affairs would be very hard to accept as a

model.of one organIsmAn particular -- man.

SI>

23
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For this reason mechanistic explanations of orgafiisns would -

not be expected to "work." However, there were difficulties with

mechanical explanations even in the physical sciences. Attempts to

find mechanical models for quantum mechanics, for example, were not

successful,. and were "taken as evidence for'the 'mysterious' character

of subatomic processes" and for the existence of a "pervasive 'spiritual

reality' that is not indifferent or alien to human values" (Nagel, 1961,

p. 337). Thus, signs of organism were evident, even in the domain of

mathematical physics, where the mechanical model had been most success
ter.

ful:

..._the failure to explain electromagnetic phenomena
in terms of mechanics, adethe general decline in
mechanics from its earlier position as the universal
science of nature, have been construed as evidence
for the 'bankruptcy' of classical physics, for the
necessity of introducing 'organismic' categories of 4
'explanation in the study of allnatural phenomena, and
for a variety of sweeping doctrines concerning levels

- of baing, emergence, and creative novelty (Nagel, 1961, $'
.p.-337). /

Thus the'Atribution-of mysterious "life forces" Or "higher

forms" or different logiCal structures to an area that is resistant to

modelling with mechsnistic. approaches seems to be common, even in the
.

physical sciences.

. Although modern organismic biases are still with us, they

seldom speak of "life forces" or "enfelechies." Instead, they refer

to "organic wholeness" or to "functional unity."

It followethat unde standing cannot be extended
beyond the scope of p sical science yithout
ducing concepts which embody irreducible wholes in

- place of physically measurable variables. The con
,cept of organism is indispensible in biology; the
concept of the individual in psychology; the concepts
of the .institution and social class in 'sociology; °

the concept of a nation in contemporary political
science; the concept of a,culture in anthropology.
Each of these wholes presents itself naturally,

because we perceive it as. such (Rapoport, 1968,
p. xyii).

/
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Of course our thinking is guided by our.perceptions.'4hus it seems

logical to study these complex wholes as we perceive,them -- that is,

as individual units, which IJe "murder to dissect." This approach is

valid, in that it does respect the clifnesS of complex systems. However,^
attempts to apply'orgAnismic thinking to gain an,understanding -- not

only,Cf what a complex system does as .a system, but 'also of how' the

system does what it does, given that it is what it is -- are not often

fruitful.

We.recognize an organism, an individual, a'nation;
and we assume that'in proper circumstances it acts
as a whole. Still, if we confined our attentiam
exclusively to.the grossly observable patterns of
these wholeg, we would not ake much progress toward
understanding this behavior (Rapoport, 1968, p.-xvii).

414

. Just as the mechanistic approach ignored too much by assuming

a system,could he studied piecemeal, so did the organismic approach
.

prevent understanding by denying'the reddcibiliiy of complex phendomini'

to the interaction of constituent componefitst
,

DIALECTIC: SYNTHESIS .

The mechanistic

dialectic where-futdamea

organismic appzbach resul

ap ach-is opposed by the organismic in a

L
1views of reality aii*contested. Where the

d from the opposition of the mechanistic

method to situations not stated tto mhanical analysis, the systems a

proach comes froi the new dialectic:

be la Mettrie, writing in }747, suggested a way out of the

animate vs. inanimate (i.e., meChanism vs. organism) dilemma With his

suggestion that ....

.... Matter was in itself neither organic nor,

inorganic, neither livinettordead, neither sensi-
ble nor insensible. The difference between these
states or properties of material.thiags sprang,
not from the intrinsic natures of their ,raw mate-

rials,-but from-the different ways in which these
materials were organized (in Toulmin and Goodfield,,
1962, p. 318).

25 1
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Although De la Mettrie had no suggestiods'on how to study

systems,_hegot very close ;ts-what. has -turned out to he a crucial: con-
.

7
cept in modern systemstheory.-Irorgariizatiodf. The waS, things are

.
organized -- how one part is related to another'in a cohtext.-- has a

proflond influence on relationships,bhe thing May enter. This is

especially important when the "things" are complex systems and the

relationships are.ones of observation and description.

The dialectiC is iltit yet fully deVeloped. However, we can
see howthe.prior, stepi ire limitihg, as we look from a bioader per
spettive than the ones provided by either 9f the two basic_models.

4

(1) -Both restr ict the kinds of situations-or phenomena:t
can be identified and utilized in'scientifiCexpAnatio
by Truing to' consider adequately the-complexities of.

* *the prqcesses of obserVation and desCription: the
Aihmethanigtic apptoachlooke at systems as_ simple coliec-

tions or Aggregates of"parts,,while the organismic ap--

yroach "sees" onlyetin.terms of wholes4.,,Neithet recog-
1 nines the subjective nAture-of' e perce ual process,

Which incides the arbitrary o onscioui) imp6si-
tidn of distinctions 'which allow us to:speak and think .

of,"uniti.". Once the arbitrarTnatu oT these distinc
t' tions is recogniZed,:the. importance ,o1 understanding the

relati
perhaps)

- becomes

I.

hip'betwepos unit at one-level Ca part,
a unit' it another lever-(the.wholel perhaps)

ifest.. This process.must Vecome conscious
a- priort conceptualizations are not to'influence the

'Processes ofOservation and de ciiption in such a way
that we are effectively blip 4y our subjective percep-
tions. Perhaps'nmore.con ious approach, omp-which
recognizes the subjectIVe a priori-nature erperceptual
prd4gAlsasill allow us to develipp more useful* less
restricting priors.

(2) Both rettpict .the kiedb of logic oves that can be'
made in going from raw ata td'f al interpretiveLstate-
merits, by failing to re glaze the'relation of data .and
description, to the reality being studied,. On one had
the mechanistic approach assumes that complex phenomena-
can be"taken apart and studied piecemeal. The bits of
ghoWledgi'are they added together,t9,give aSunderstandin
of the whole. Since this approach ignores the effects'.
ad to ettual m tiple interactions among the porta, it

cannot -anticipa e'the effects of these interactions, thus'
limiting the ds of ltacements that can be made, given
a set of,,,raW d a. This limitation stems from the

.. 2 .,
1/4)
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combination of two factors: (s) when moving up to a
higher level of analysis, it is assumed that the'infor-
mation about the lower levels is simply added up to
provide a description of the system .at the higher level
-- it is not necessary to provide a different descrip-

tion for the different level; and (b) not only is' it frorL.
necessary to provide a different descriptiOn (at a

-different level of analysis) for the different level,
but there is no way:to generate such a description,
given the original one.

0

On the other hand, the organismic approach denies the
legitimacy ofcross-level analysis as even a 1pgical
possibility. Thus, data must be used at the level
from which they come. For example, the relation of

. the behavior of the individual in an organization to
the behavior of the organization as a unit in its own
right is not'open to scientific investigation.

. (3) The limitations discussed above combine to restrict the
kinds of theory that can be put-forth. The basic prob-
lem seems to stem from a fundamental ignorance of

relationships between levels ,- levels of analysis,
levels of abstrAction, levels of perceptionlevels of
description. When in the study of complex, multi-leveled
systems these relationships Are violated,' confused, or
ignored, it becomes difficult to move toward an under-
standing. When the relationships are clarified, research
can progress Much faster, as important questions are both
more readily identified and resolved. This will trani-
late into more substantive theory, together with a
fundamentally deeper understanding.

e ONO

THE SYSTEMS MODEL'

A whole which functions as a wholes by,virtue of the
interdependence of its parts is called a system',
and the method_which aims at discovering how this ,.

is brought about in the widest variety of systems
has been called general system theory. General .

.system theory seeks to-classify systemeby the way
their %components are organized (interrelated) and
to derive '1i4S,' or typical patteins of behavior,
for thedifferent claSses.of systems singled out
by the taxonomy*(Rapoport, 19,68, p.-xyii).

104
i

.

A.system is a set of objects. together with relation-

ships between the objects and between their attri-),
butes-(Mall'and Fagan, 1968, p. 18).

, t
..

'''.7

27"

4



www.manaraa.com

4

I

16

The whole is more than the 'sum of the parts.

The syStems approach, like the organismi approach, says that

4,11

Wehave to look at the whole system. If we isolat the parts, we take

them out of the, context in which, they function, thus destroying their

relatibnship to theSystop or, in other words; changing the system.

-Unlike the organismic, approach, however, the systems approach identifies

the parts, together with their interrelationships,' as the origins of

properties seen in the whole system. The systems approach denies the

existence of "life forces" -- or else it reduces_them to effects of the

interaction of the parts of the system.

One example of this process is seen in the reduction of
.

"plIrpose" or goal-oriented" behavior to cybernetic control systems,

governed by egative feedback, where the discrepancy between the actual

state of the system and the desired or ideal or goal state is fed back

into the system in-such a way as to cause it to move toward the goal

state. With this arrangement, mindless machines can be made which

appear to function as if they:had conscious purposes;
o

The concepts of systems, theory have enjoyed wide use.by

communication scientists for the past 10 or 15 years. Terms like

"feedback," "boundary," and "process" appear often in the literature.

At professional meetings we hear the phrase "systems,approach" with'
'1

increasing regularity..

But.what does it mean to iakea "systems approach" in com-

munication research? To many; it means that we try'to "get the whole

picture" -- look at all the relationships. This is sometimes trans-

lated into highly elaborate muitivariate research,strategies,

"ask more questions." Any number of statistical methods may be used

to analyze the results: metric multidimensional scaling techniques,

multiple regression methods, or path analysis techniques, to name a'

few. But, some would argue, these are merely extensions of the mechani-
,

stic (i.e., classical analytic) model. They are not really different

-- they are not really systems approaches.

1

I
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'Buckley (1967, pp. 36-7) suggesti that it is the "central

focus on the principle of organization per se, regardless.of what it

is that i4 organized" that makes the systems ap:proach. °He goes on to

say that we should find the systems approach attractive beciu.se it

promises to develop:

1

(1)- A common vocabul4ry unifying the several
'behavioral' disciplines;

(2) A technique for treating large, complex
organization;

(3) 'A synthetic approach where piecemeal analysis
is not possible due to the intricate inter-

relationships of parts that cannot be treated
out of context of the whole;

(4) A viewpoint that gets at the heart of socio-
logy because, it sees the sociocultural system
in terms of information and communication nets;

(5) 'The study of relations rather than-'_entities;'
with an emphasis on process and transition
probabilities as the basis for a flexible
structure with many degrees of freedom; .

. (6) An operationally definable, objective, now
anthropomorphic study of purposiveness; goal-

,seeking system behavior, 'symbolic cognitive
'processes, consciousness an self-awareness,
and sociocultural emergen01and dynamics in
general (Buckley, 1967, p. 39). 1

-

The systems approach: a focus on intricate interrelationships

of parts; a concern with information and communication nets; the study

of relations rather than entities; the choice of organization as the

central, variable. ,.

But how does the systems approach work? Surely there have

been advances in the 227 years since De la Mettrie suggested that the

key concept was organization.

There are a few hints.-

Karl Deutsch says that only in the last fifty years haie we

seen the beginnings of new models that might help us. These, new models,

29
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he says, have been the developments of "communications engineerine:
, 4

Modern studies Of communications engineering suggest
that the'behavior of-tuman organizations, peoples,
and societies have important relations in common
with manmade communications metiiiiks, such as servo-
mechanisms,. switchboards, and calculating machinery,
as well as with the behavior of the human nervous
system and the human mind. It not seems possible to.
analyze and describe the common patterns of'behavion.,
of self-modifying communications networks in general \
terms, apart from the question whether their messages
are transmitted and their functionscarried out by
circuits-of electric&l cvrrent in an electronic
device, by chemical and neural processes inside a
living body,,Zor by spoken, written, or other com-.
munications between individuals in an organization,
group, nation, or' society (1968, pp. 389-390).

Rapoport and Horvath suggest that topology, showing causal

relations as directed segments, and representing complex systems as

networks of interrelationships,-is one'important conceptual tool (1959).

In making this suggestion,they,support'Deutsch's focus on
.

networks of interrelatiOnships.

And finally, Ashby tells Us that the way not to study.a

complex system is ... 0

.1
-... by analysis, for this process gives us only a
vast nuMberof separate parts or items of informa-
tion, the results Of;whoseinteractions no,one can
predict. If we take such a system to pieces; we
find that we.cannotreassemble-it ... (1956),

I

much as "all the king's horses and all the king's men couldn't put,

Humpty together agaid." ,

Clearly, then, a focus on networks of interrelationships is

consistent with the systems model, which looks both at the relation -

ships, among the pditS of the system and the ones between the parts of

the system and the whole system. This apprOach will have asimulpa-
z

neously look at- the whole system and the, parts ofwhich it is made -:-

it will have to work-at-both levels at the same time. .

-3)
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This network /systems approach was first applied in social

sciences in the thirties, with Moreno's sociograms'(1934). In the

40 years since then, many significant advances have been made, in both

the conceptual-and methodological areas. As the appropriateness of the

systems approach in social systems became apparent, more "and taite in-

vestigators turned their attentions in this direction. Whdh this new

"field" of research is examined from the perspective of 1975, however,

it becomes clear-that the "systems approaches" we have seen are only

tentative beginnings. The conceptual basis has not yet been fully

worked out, and this means that methodological difficulties will be',

many, since the methods depend on a clear conceptual foundation.

In Chapter Two, we will review some of the methods that have

been used since 1934. We will be interested in three issues'tliire

what the Methods do, what their conceptual bases'are, and what kinds

of problems they have. We will then show how most of these problems stem

from a lack of clear,conceptual foundationsc_

ti
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CHAPTER TWO

PREVIOUS METHODS OF NETWORK ANALYSIS

no.

INTRODUCTION

In this,chapter we review several methods that halm been used
, -

/to:bK247 out the' "systems-as-networks" approach-that was introduced in

the last part of the fil.st chapter. In actual applications, the model

'translated "networks" in general to "communication networks." The methods

reviewed here are thus all examples of an approach which might be called

"communication ifietwork analysii."

Many different methods have been developed to analyze communi- w."4

cation networks. For our purposes, they can be divided into seven pate-

(' gories: (1) sociograms; (2) matrix manipulation; (3) matrix multiplica-

Um; (4) factor analysis; (5) multidimensional scaling; (6) blockmodeling;

and (7) a set of miscellaneous other methdds. Of these methods, the

sociograh, developed by Moreno-(1934), was both the earliest and the

most influential. 6

THE SOCIOGRAH

In a sociogram, individuals are represented by points, and

communication relationships between individtlals.by lines drawn between

the corresponding points. (A sociogram is illustrated in Figure 1.)

By examining the sociogram fora given network, the structure of the
sei

system is determined; in terms of cliqUes or clusters of people who cos-
.

municate primarily with each other.

The introduction of the sociogram was a major advance for the

field. For the first time there was a concrete way of representing
,

systems of interacting individuals. The process seemed quite elegant

and was' operationally very simple. The graphical representation of

group structures provided by sociogramis prpved to be useful to both

practitioners and theoreticians *like. For small simple systems, the

sociogram seemed to be ihe ideal tool. Despite the good points, how-

ever, there were problems with this method

I
4
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Figure

A SOCIOGRAM*

0
21.

*From Rogers, Everett M., Park, H.J.,'Lee, S.B.,.Chung, K.K., I'uppa, W.S.,1
and Doe, B.A., "Network Analysis of'the Diffsion of Family Planning
Innovations Over Time in Korean Villages: The Role of Mothers' Clubs,"
paper presented at the Population Association of America, Seattle,
April 17-19, 1975.

.14
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Although Proctor andkLoomis(1951) present-sote guidelines ----''''

for the preparation if.sociograms, there were no conceptuallygroundo

analytic techniques for the analysis of systems using this approach.

Instehd; analysis was either by examination or by the "applicrtion" of

concepts borrowed from graph theory, an abstract branch of topological

mathematics (see Harary, Norman, and Cartwright, 1965; Flament, 1963;
.. i

Coleman, 1964; Roby;,4968; and Lorrain and White, 1971). P

Besides th

t

lack of a solid conceptual basis, frhich would

identify theoretical y relevant goals and methods of aetieving them,'

there were practical problems. As the size of the system increased,
4

so di3O the difficUl y of analysis, so. that for systems having over a
-0

hundred members the method was practically worthless. It is virtually
. - .

impossible to "comprehend" a sociogram for,a system having? say, 200

members. This prob em was further aggrhvated by the lack of systematic

procedures that void lead to replicable results -- two independent
.

investigators, Asing the same data,,would seldom end up with sociograms

that were even vaguely similar. '

\\
.

MATRIX METHODS

Due probably'to.two factors .the recognition of the prob-

lems connected with the sociogiam, and the growing tendency to mathema-
.

tize the social' sciences -- other approaches were developed. Without

exception, these newer methods represented nem C data in the form of

matrices; where there is a row and a col ch individual in the

system. If person I communicates with -pdrson J, a "1" will be entered

in row i, 0,o)umn j. Otherwise, the entry will be a "0". The entries

do not hive to be restricted tebinary values, althadgh this is a ,common

approach (some methods requite a binary matrix). The discussion of the

matrix-based methods will be organized, into three sections. First, we

will examine each in terms of: (1) the mathem atical paradigm used to

represent the data; (2) how,the methods go about finding "cliques"/

" groups" / "clusters " /%locks "; and (3) how they define "cliques"/"groups"/

"clusters"/"blocks." Second, we 11 discuss the limitations 4T diffi-
c

ally, the relative advantages of
. ,

culties'connected with each, and,
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each methdd. Before going into the specifics of the six classes of

methods, a discussion of the "dimensions" along whiCh'Wewill analyze

them will be appropriate:

1. Distance vs. Linkage Models.

By the "mathematical paradigm used to represent the data/

we mea one of two that are used distance models and linkage models.
/

In the fOrmer, raw network data ()Who is connected to whom) getrans-
%

formed to give a matrix of "similarities" (correlation01 ox."distances."

These "distances" are defined only in terms of the mathematical opera-
/

. ,

tions used to compute them. They are not aistances'in terms of either

actual physical distance or of the number of steps necessary totsend a

message from pne node to the other. Two nodes are similar (close) if

their columnd,(alternatively, rows) in the.sociomatrix are similar

correlated). In order to transform a similarities matrix into a dis-

tance matrix, the elements in the former,which usually range from

0.0 (completlir dissimilar) to 1.0 (identical), may be inverted dnd

decreased by 1.0A Thus, a similarity of 0.0 will become 6, or infinity.

Infinity minus one is still infinity. Thus, two nodes with completely

dissimilar columns (rows) in the sociomatrix will be infihitely far
1

apart in the-distance matrix. A similarity, of 1.0 will,becoMe -i- - 1 = 0.

Two identical-columned nodes are separated by a distance of zero, ,

In,contrast to the distance approach, the linkage.approach,

uses the raw sociomatrix, either as it is collected, or in A binary-
,.

form obtaine4by deleting either weak ;inks or non-reciprocaied links,

or both. Thus, a linkagedmatr (sometimes called the adjacency'matrix)

may either be binary or continuous,with,higher valuea-refeiringio

,stronger links.

The differences between the two approaches re several:

'(a) The dirce approadh requires it full matrix (i.e., there

is a value for every pair of elements in the system), while the linkage*

method does not (i.e., an adjacency matrix may be lar!94empty, sig.:.

nifying the absence of relationships between many,pairs of nodes).

1

35
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(b) In a sense, the Calculation of the distance,thatr
,

creates new information -- information about pairs of elements not

directly related to one another in the` raw data. At the same time,, ...::

4

*
it loses much information. It is impossible to reconstruct a unique

adjacency matrix, given a distance matrix ,,..because it is not possible

to tell whether brnoe any particular pair of nodes is only

how similar their sets of links are., Is fact, it is quite possible

for a pair of nodes to be very "close" to one another, and yet have no
0;\

direct contact.
S . 9

(c) The two.methods involve different scaring processes.

The linkage method can use nominal, ordinal,-or ratio level scaling

with appropriate choice of measurement instruments. (Nominal: Who

do you tali with? Ordinal: Rank the people in the system in.order

of frequency of contact, so that you give the person you spend the

most time with a ',sr; the person you spend the'next largest amount of

time withsa "2"; and so on. Ratio: Please indicate how much.time,

in hours; you speAd with each persol inca typical month.) In contrast,e

the numbers Obtainedwitfi a distance method may be ordinal, or Possibly

(doubtfully) interval, but not ratio. Infinite distances are 4specially.
troublesome..

2. The Definition of Group

All of the matrix=ba ed methods identify some. kind'of "cliques"/

"grouperclusters"/"blocks." e term "cliques" was originally applied

in sociometric studies where lik ng or disliking rel ions' were of

interest. Because the term-"cli e" his affective, diuuitations, the

term "group" is used here, as i is felt to be s what "cleanee'con-'
. r

ceptnally. Similarly, the term "clueter" is not used because'it carries

less of the meaning we desire than the more Cieticriptive "grouP.s!.

Blocks" are a special kind of cluster, and will be.diacussed with the

blockmodel procesi. In this comparativediscussion, then, the,term

"group's is used as a general term which subsUmei all the others.

r

a ,
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Ther4e are at least five distinct types of voups that are er

- used in these methodsof analysis. Since the definition of group

varies from method to method, the particular definitions will be pre=

dented with the discussion of the methods4.

Method of Identifying_Groups .

Since all the methods-identify groups (or at least detect

them), they must all have a process or algorithm for doing this! Four

different approaches to this process can, be identified.

_ (a) The method of division. The entire network is divided

into two parts. Each part is then divided into two more parts, and so

on, until the desired "fineness" is reached.

(b) The method of agglomeration. Groups are started with

a "seed" -- a node which is chosen because of some characteristic like,

a large number of links. Nodes are identified and added tb the seed

by a variety of methods, until no more nodes can be found that fit the

criteria. The result is a group.

(c) The methods of trial and error. 1) Rows and columns of
-de ,

the adjacency matrix are simultaneously permuted- to give a specifiC

type of ordering which allows groups to be readily,idehtified by eyeball

inspection. Re-ordering rules mg be informal, thus the "trial and
IP

error" name for this method. 2) In the case of factor analyst and

some hierarchical'clustering methods, a family of, solutions is obtained

and the "best" one is teed; the others,haVing been tried, are rejected.

4
(dy The method loosely called overall pattern recognition.

This is the method used in the analysis of sociograms. It is also used
0

inthe matrix-based methods in aeveral different forms. The adjacency

matrix (or a similarities matrix) may be reorganized in someway that

groups are readily identified, either'by inspection or by some process

that is somehow analogous to "looking' at the'wholeiYsted.*

*The method presented in Chapter Eight uses such a technique, overtly
modelled on human perceptual processes.

37.
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THE METHODS

With this introduction in mind, we can now mov to an exami-
i

natio f the various me,thods.
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1. Matrix Manipulation (Forsyth and Katz, 1946; Beum and Brundage,

1950; Jacobson and Seashore, 1951; Weiss and Jacobson; 1955;

Borgatta and Stolz, 1963; Coleman and MacRae, 1960)

This is a linkage -based technique named after'the method used

to pfepare the data prior to identification of groups. In this pro-

cess, rows and columns of the sociomatrix are simultaneously permuted

in such a Way as tb move as many of the non-zero entries as possible

close to the main diagonal of the matrix. If there are any groups, _-

they will, be visible as clusteri-Of non-zero entries, as shown in

Figure 2. Groups are the sets of nodes whose columns and rows are in

these clusters. They are loosely defined as sets of people whb inter-

act more with each other than with-people not-1n the grbup. Group

detection is by visual inspection, so this is a pattern recognition.

technique.

2. Matrix Multiplication (Festinger, 1949; Luce and Perry, 1949;

Guimaraes, 1970)

This binary linkage-b4ed method allows groups (cliques) t9

be detected by a.process involving the raising of the raw sociomatrix

to successively higher And higher powers, whiCh allows the two-step,

three - step,'... , k-step indirect paths linking individual; to be

identified, as well as the original one-step links. This process

allows individuals to be assessed,for their integration into the

system, since it allows both direct and indirect links to be counted.-
,

Although this method.alIowS the presence of cliques or groups to be

determined, the number of groups and their membership is not speci-

fied. The concept of "group" is not clearly specified here, since

groups are only detected -- not identified -- bg:this method.'

I

a
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3. 'Factor Analysis -(Holzinger and Harmon, 1941; Block and Husain,

1950; MacRae, 1960; Tyrop and Bailey, 1970)

Two techniques employing factor analysis have beep used

direct factoil'analysis of sociometriy. data and factor analysiof a

correlation Matrix^cOnstructed,from the raw soci6matrix.' Both factor

analysis methods construct new dimensions corresponding to variance

patterns; where successive dimensions or lactovsaccdunt foras much

.bf the remaining variance as is possible, linear cOmbinatiins of

48

the variables (which are people ittf the
4
network). R:ih4actor, is then

a'cliqueor:..group, when an appropriate arbitrary cuttierioint is chosen
. ,

to discriminate betwqpn members and non-members (nodes loading highly

or nodei not loading on a given factor). These ar distance Methods, '

where the method df clique identification isit c ina of tr 1.
%.

and error and overall pattern recogatiopI (The factor anal is pro-

cedure-gooks" at the whol get of data and extracts patterns as
.

factors.)
.

-Naas r .

l

* 4. Multidi;.ehrional Scaling°MethOds (Torgerson', I958;-Shepard, I962a,b;

Kruskal, 196 Morton, 1959AGee, 19681 Guttman, 196t;

feifitiM10 and Roskam, 1971) *, -

14tidimensional scaling

metric)' attempt to ideniify gioups

measuresof the "distance" between

techniques (both metric and non -

from the sociomatrix by employing
,

the points in .sociteetrielpace.
1,

To ute ttirse methods it is necessary to determine rsi the "minimum
,

dimension4itY" of the "space"
,
and,

r
ssegkthe projections of- ea

), s
observation onto the dimensions. Since the dat mit take the fo

of distances between persona, the dimensional ax s will represent

characteristics of the members of the cliques,'"ather than ictual

munication behaidors (Lankford, 1974, p. 293).',Grou s, then ,/are b

I I

ye)

ed

on the projections of, original obstrvations onto the iv dimensions.

4 0

,

6,
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5. Blockmodelling Methods (White, 1963, 1961, l970,1974a,b; Lorrain

and White, 1971; White and Breiger, 1973;

Breiger, Boorman, and Arabie, 1974) -*

Blockmodelling methods may,be either distance-based or linkage-
,

based. We Will discuis here only the linkage-based applications, be-,

cause it is not clear just how the distance met s work or-what they.

'do., With blockmodelling methods, the aim is to perpute,simultaneously

the rows and columns of,either the two-dimensional binary adjacency
a

. matrix or a three dimensional matrix created by "stacking" the matrices

for several different relationships, in such away as to facilitate the

Antification of "blocks." A block is both a set of network nodes

having siMilar'relations to nodes in other blocks and an area in a

matrix (a submatrix)-identified with those nodes. Thus, all the'

members of Block A, for example, would be characterized as being

asymmetrically rejected by members of Block'B.,4In the other sense,

that of it submatrix, there are three kinds of blocks:, those having

only zeroes as entries; those having some ones;_ and those having all

ones. 'In_blockmodelling, only the zeroblocks are of interest. These

are made as large as possible'by permuting the rows aid columns. An

_ordered matrix divided'into blocks is shown in Figure 3.

Blocks are unlike the other kinds of.groups we have seen so

far, in-that "there is no implication that the members of a block

coOpeiate or coordinate with one another: In fact, the individualg

in a-block need not be connected at all to one another ... " (Breiger

et al., 1974,,p. 10).

In a sense, then, blOckmodelling is aLicky. of categorizing the

members of a system on the basis of siillar=interiation patterns. Thus,

"it is clear that blocks need not je cliques in the itanderd graph-

theoretical sense or any of it y sociometric generalizations"

(Breiger et al., 474, p. 10).

The matrix is re-ordered on a trial and error basis. Blocks.

are identified by inspection; this,method is thus a pattern-recognition

technique. A

41
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Figure 3

IMAGINARY DATA ILLUSTRATING
ILOCEMODELS, LEAN FIT,,,,,AND ZEROBLOCK$*

1 o 11) 000lloo
2 0 0 0 1 0 1 1 0 0 0

3 0 0 0 1 0,1 To 0'1

4 '0 0-1 0 0 1 00 0 1

5 0 1,1 0 0'0,1 1 0 1
Aa)

6' 0 030 1'0 0 0 0 0 1-

7 1 l'O 0 1 0 0 1 1 0

8 0 1 1 0 9 1 1 o o 1

9 0 1 0' 1 0 0 1 1 Oa 0

10 0 1100-.0000

(b)

2 0 1 0 0 1 1 0 0 0 0

7 1 0-1 0 0 0 0 1 1 1

8, 1 1 0 1 0 1 1 0 0 0

3 0 0 0 0 1 1 1 0 0 0

4 000 1 0 1 1 0 0 0

6 0 0 0 0 0 0

10 0)0 0 1 1 0 0 0 0 0

'1 1 1.1 0 0 0 0 0 0 0

5 1 1.1 100.1000'
9 i 1 1 0 1 0 0 0 0 0

.

1

(c) 0 1 04

1 1 0

Zeroblocks

30

(a) a fiotitioUs adjacency matrix
(b) the same matrix,_ permuted and partitioned to reveal zeroblocks
(c) a blocksiodel showing relations between and within the groups created

by the partition
,

*FromfBreiger, Ronald L., "A Blockmodel Study a Blomedical. Researc
Network," American sociological Review (Februa 1976).

4,)
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6. Miscellaneous Methods

Included in the set, labelled miscellaneous is Hubbell's (1965)e
method which raises the socipmatrix to the pth power, and sums all g

matrices. This is a linkage method, with uncleai goals for group defi-

nitions. It seems to fit best in the pattern- recognition class of

methods. -.

Another method in this set is McQuitty's linkage analysis

,(1957), which is distance-based method, working as it does with a matrix

of associations (similarities). However, this method does not function

like other distance methods; it looks rather like a linkage method in

the way it detects (builds) groups:

A Linkageds defined as the largest index of ass();
ciation which a variable has with anh or all of the
other variables. Auch a linkage definition. excludes
overlapping of cliq0s and isolates. The method
first joins the reciprocal paire and then draws in
all other remaining unilateral relations, which
McQuitty calls clique 'cousins.' Correlation. was
used as an index of association.

Steps in the analysis are:

1) Note-the highest entry in each column.,
2) Note the highest entry in the'entire matrix,

develop the first pair, A, B.
3) Read-across the rows A, B, Selecting any

underlined entries as clique members (first cousins).
4) Read tie rows of the first cousins,

selecting under ned entries as second cousins.
5) Search for third and higher order cousins.
6) Excluding all persons already classified,

'repeat steps 2 thru 5 till all pens re classi-
fied (Lankford, 1914, pp. 296-7).

McQuitty's approach is clearly an agglomerative methods, with

post hoc definition,' of groups as "what the method prochices."
a

This overview of methods is not exhaustive of all the methods

that have been used. It does,,however, cover the major ones.

Problems a

If any single conceptual weakness, is common to all the methods

discussed above, it is that there was ,a consistent failure to specify

43
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what the analytic'goals were before choosing an analytic method. Thus,

indestigators seem to have let the method provide the definition of

group, rather than let the analytic method, be shaped by the preconceived

notion of what they were looking for. Therefore, in factor.analysis,

a.group is a'factor. In multidimensional scaling, groups are what the

scaling routines produce. ,

When the goals of,analysis are notclearly specified, it be-

comes difficult to establish guidelines that will allow different tech-

niques to be judged for Validity-and accuracy. Moreover, it, is difficult

to justify a decision to. go for a linkage-hased method over a distance-

based method, or to use pattern-recognition techniques rather than

"devisive or agglomerative techniques. If there is no clear:conceptuali-

zation of the'relation of the data to the original system or to the final

description of the system it is impossible to know which kinds of

operations on the'data will be legitinate and which will not: Finally,

'a clear conceptualization will help by providing clues as to how to set

up an algorithm that will provide fast, useful, complete results.
. I

This fundamental weakness seems to be the ultimate cause for

most of the more concrete difficulties experienced by users of

the methods discussed here. We will discuss some of these problems

below.

The most universally encountered limitation,is one of iize.

Sociograms.are good for up.io about fifty-person networks,. Matrix

manipulation and multiplication are good for up to about three hundred.* .

The ultimate solution to this problem is to realize,, that in very'large

systeis most of the possible pairs of nodes that could be related are

not. Thus the storage of an entire matrix is wasteful of storage space.

The second major problem isln interpreting the results from

routines originally designed forthir purposes. This is a major

fault of factor analysis,-multidimen ional scaling, and some other

distance-based methods. Related to this, difficulty is the fact that

.

*Although larger computers with virtual storage seem to pro v de an
answer to this limitation, this is'not the case. 'While it y be
possible to store a virtual matrix for a few thousand persona swap-
ping and paging requirements would make execution timeirexcessivel30
long. 4
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many methods simply dO,not prOduce useful results. Matrix multiplica-

tion, 'Ifor example, can only detectIgliques -- it cannot identify them.

Thatlls, it can indicate whether or not'there are any cliques, but it
4

does4apt tell either how many cliques there are or who their members

are.

The trial and error. methods, as, well as many of the pattern-

iecognition techniques, may be faulted for their lack of formal analysis

rules. Again, this stems .from the lack of clear conceptual foundations.

It is difficult to tell someone how to accomplish a task if the task

itself is not understood, let alone if it is not clear when the task his

been successively accomplished.

A brief listing of the difficulties encountered with each of

the methods discussed above follows.

1. Matrix Manipulation '. I

(a) Size limitations. Not practical for over.300 person

networks:

(b) The rules for, some manipulation, techniques require Ma-4

subjective decisionS-and are not explicit enough to,allow computerize=

tion, while other methods, which have,been computerized, arevery.ex-

pensive to execute, requiring inordinately long computation times (see,

'for example, Beum and BrUndage, 1950),

/. Mat

tion.

Multiplication

(a) Subject to the same size limitations as matrix maniliula-

(b) Does not identify cliques.

-(c) This "awkward, and very restricted" method only works for

.binary matrices, and handles'only mutual choice (Lankford, 1974, p. 288).

3. Factor Analysis

(a) Suffers from similar size limitations as the elitier

matrix methods.

,s
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(b) Thdtwo computational stages.of this method, factoring

and rotation, consume large amountsof,computer time relative to other

methods.

(c) The,assignment of nodes to groups is sopewlikt arbitrary

since the investigator must choose the,size of the factor loading to use

as'a cutting pointas well as the number of factors to rotate.
v.

/ 1; 2\

(d The'results obtained from factor analysis are difficult

to interpret and use as descriptions of actual communication behaviors.

4. -Multidimensional Scaling Methods

(a) These methods sufferfroia the same size limitations as

factor analysis, and use even more computer time to execute,

(b) The final results Are not at all close to the original

data, dwg,tohe many complex transformations that are made on the data.

'1.siWiediYL4Ukford (1974, p. 301)' criticizes this method as being

"roundiboit:!'.

(c) The determidation of groups is not a clearcni procedure.

(d) As in factor analysis, the results are difficult to

utilize and interpret. Lankford says 'that "multidimensional scaling

has proved to be a very inefficieht method for clique identification

both empirkeally and logically" (Lankford, 301).

Blockmodelling Methods

(a) Suffers from size limitations similar to those of matrix

manipulation.

.
(b) There'are no Clearcut procedures,for putting the adja-

cency matrix into the formneeded to'construct a ,blockmodel. The,pro-
'," .

cedures used by the originators of this method aretdescribecLACtrial
t 40"

.

`.-, .1.,,and error" (Breiggr et al., 1974, p. ll) . . .. ,
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(c) The,relation of blocks to actual groups or cliques is

unclear, and may vary from case to case. This method seems to be more

of an individu&, level of analysis, although it Joss function in the

context Of the 'larger system.

6. Miscellaneous Methods (The seta of other methods, including Hubbell's

and McQuitty'smethOds)

(a) -Suffer from similar size limitations as matrix multiplica-

tion methods.

4 (b) Seem to not work reliably, sometimes` producing breakdowns

into grow and sometimes not (Lankford, 1974, pp. 295-6, 2967). .

(c) Fail to clearly state the goals of analysis, resulting

in ambiguous or vague relations between results and raw data.

, / .

Relative Advantages

The new methods. promised many benefits and were able to deliver

on some of these promises. The sociogram prRvided a way of'graphicairi.

representing network structures. The matrix techniques provided a

mathematical format for the data, and offered investigators a more highly

structured way of representiOg complex situations. The power of matrix

iepresentations of other' kinds 'Of data'in otherfkinds of situations

promised to be fruitful also in the social sciences.' The similarity of

sociograms and formal graphs (in the topological sense) led to the ap-

plication of graph theoretical concepts.to communication,networks. One

fallout of the use of graph theory is the ktrix representation'of she'

network, since matrix representations of formal graphs had proved very

useful.

ON MATRIX REPRESENTATIONS

1.

The matrix is an especially powerful form of mathematical

notation. Using matrices, one can speak of sets, of relations aleOpera-

tions that would be prohibitively Cumbersome with 11 sophisticated

- *

47
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,notations. The "condensation of meaning" (Brown, 1969, p. 81) into

matrix operators is what makes them so powerful and elegant. It was

the hope for an extensionof this same power and elegance that led to

the use of,matrices in sociometric and network situations.

Compared to compli4ted and unruly sociograms, matrices are
_ .

very well-behaved indeed. In a matrix. the numbers are arrangedinto

neat rowand columns,. and even the order of the Crows and columns

carries meaning. It is easy to locate any particular element in a

matrix, siimply)));Itiving its subscripts.

This ease of location and: manipulation was. probably one reason\

matrix representations were favored in computerized programs for network'

_analysis. Most of the popular scientific computer languages that are

good for,numerical work,like FORTRAN:or ALGOL, are arranged around

array stru6turfes. An array is a matrix of one, two, three, or more

dimensions.- 'Elements in arrays are referenced by means of subscripts,

Which may be orderly varied by simple computer statements like DO-loops.

Thus, matrix representations became popular early, and becameu

more deeply entrenctted with the advent of,computers and computer-pro-
.

grams. This popularity can be seen with a quick analysis of the tech-".

niques available in the field -- with the exception dfthe sociogram

and the method presented in Chapters Seven and Eight, every one on which

inforMation was'availabie used trix representations.

Although the matrix r sentations, did offer much in the way

of utility and theoretical promise over the simple sociogram, and

although they did allow a host of different kinds of analytic techniques

to be tried, they may have hindered progress in the field. They seem to

be so ideal and "natural" that there was little tendency to look for

other ways of representing networks and performing analyses.

The use of matrix representations was ,symptomatic of a deeper
7

problem, however. This deeper problem has been discussed already =- it

is the lackitof clear conceptual foundations. In one way or another, all

of the computational difficUlties listed abo.ile for the various methods

can be traced to this one fundamental lack. It is, this antecedent prob-

lem that we focus on in this thesis. The position taken bete is that

4(
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a b ter understanding of networks will lead to better ways of studying
.

%

them, 'Which will lead not only to better access,'but also to 'more power-

ful theor) about how nettiorks work.
.

EXTANT DATA

In spite of the difficulties mentioned.above, massive amounts

of empirical data have.been gatheredson communication networks. These

data come from a large number of studies, most of which were experimental

or quasi-experimental labOratory studies.. The.studies °themselves will

not be individually reviewed here, as there are already several

extensive reviews in print (see, fors- example, Collins and Raven, 1969)./'

Two considerations, how1yer, preclude the use of most, of this empirical

infotmation. The first is that almost:all of these investigations were

done on systems having three, four, or five.members. Two serious prob-

lems stem frola_this choice of small sizes.

*
(a) 'There is neither conceptual nor empirical agreement'

whether generalization is possible across these three group sizes.

Investigators not only get different results., but they cannot agree

on how to define certain situations across group sizes (Collins and
}'

Raven, 1969, p. 147).
a

(b) Findings based on systems having five leas members
. ,

in a laboratory situation cannot possibly be extended io Teal function-

inging systems having several hundreds or even thouiands of members.

Five- person groups are simply too small tofallow the.kinds of things

commonly` observed in large systems, such as hierarchical organization

to occAr. In addition, the systems used in this work have typically

had lifetimes of less-than two hours. This temporariness can be con-.

trasted with most real-world systems, which have been evolving and

growing for years. Certainly, a group of semAral hundred people who

have been working together for. many years is hardly comparable to a

group of five students who have been working on a puzzle for a few
c-)

minutes, or even to a small group experinnt lasting three days in a.

aimulated fall-out shelter.

49
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Second, according to Collins and kaven (1969, p: 147)', an
4

unfortunate state of affairs is "prevalent throughout,the entire commu-
. .

nication-net literature.' They say, "It is almost impossible to make

a simpleseneralization bout any variable without finding.at least one

study to contradict the generAzat on," and go on to suggest that "in' . 4

the light of the massive nfusio present in the aarature, the'timei°

may well have come to tighten our statistical belts." They feel that

the unreliability of the findings is dud to the "liberalness with which

most.investigatori have treated the traditional .05 leVel.'t They seen

to be taking/an approach which says, "we're sure there's something there;

we just haven't looked close enough."

CONCLUSION .

A major point of this chapter is that we've looked neither in
.

the right places nor in the right ways. This point will be-extended:in

the next part, where we will expend the conceptual paradigm upon:whidi'
. . r" 4

the methods we discussed in this chapter were based, by examining the
o ,

. entire problem of,comilex systens
A

from what might be called a "naive" ..

, . -/
perspective. That iejowe will attempt to approach the sitpation,With°

T

as few preconceived notions as pos0t4e.so that, perhaps;, our apOibisch
. . - f
will be fresherand,,horull)4 more:fruitful.

.

4,- . ,, ' 7

InArt4Wo, then, we ,will beAooking for answers to three
, 0.,..11*,. .

..
,

questions: : ,
.

-. .. :4 .- :4'. .,,-4

.(1)' What are we looking'aea"Ce4 what Ara. complex communi-
cation,systems? How 4relbese Sfstems.organized? How

ondo they come to fun
of their characteris
component part's? How a*
another and to thewHo

(2) How do we lacTN.e.,
of observation and desc

relationship between th
observed iaMence the p
description? What happe
is complex and multi-le

i

coordinated units, when none
ties are seen in their
parts related to one

sy
...

f $1"
*

,1

OW, in'ietleral,'are the processes
a

ptton carrieeout? Rol., does the

ob4erver and the system being.

ssesorobservition and
wn the system being observed
d?

(3) ,What do we'look for? When we combine an understanding .

of .some badic,systems principles with an awareness of .

, .

,- , /, .

.

4
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how the procesies of observation and description work,
'how can we structure the investigation process so,as to.
gain as much useful information about complex systems 1
as possible? In other words, what will we be looking

) for when we study complex systems?

The answers these questions will provide the basis for a

Coherent systems apProach,to the study of complex systems, viewed as,,

networks of interrelated parts. In the lbst sections of Chapte1 Five,

we introduce a procedure for performing'this type of analysis -- GASSICS --

a GeneralAigorithm for Studying Structuring In Complex Systems.

In Part Three, we will discuss an tnitial cperationalization .

of the fir steps of the GASSICS procedure. Even though the proCe-)

dures presented there are very complex, they only take us through the

earliest stages of a Completesygiems analysis. ;Later stages 'will have
r

to wait until much more data than we presently hav& is collected and

analyzed; until much more theoretical work is completed; until more

sophisticated computer programs are written to perform the necessary

analyses. Since this is.the work. of many years, only the first stages

will be included there.

1n the fourth part, we will present an, example of this method.

We will perform an in-depth analysis of the structure of a large-scale

communication system. This analysis illustrates the use of some of the

procedures described in earlier chapters, ;d1

Finally, in Chapter Eleven we will look toward the future to see

where the logical next steps shoulitbe.. zliere we wiilbe trying both to

anticipate and direct further work in this area. While we cannot yet )

, .

tell what,the results of ongoing research will be, we.ard aware of some

'limitations to pSesently available methods. An analysis of these limi-

tations will suggest\ipecific areas that need more work if we are to

continue to make rapid advances in this field.

S

a

5
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PART TWO

CONCEPTUALIZATION

In the first Part we discussed the evolution of the basic

°

paradigms used to structure approaches to the study of social systems.

The discusAon of conceptual approaches in Chapter One was followed

in Chapter Two by a description of the operational techniques that are

use4 to perform the actual analysis. ,.(

Whefe most of the method* discussed in Chapter Twoyere far

superior to the earlier organist" or mechanistic approaches, none was

ideal. Even the best of the methods, in terms of efficiency or appro-

priaten7*, had pr lems. We identifi one problem ds common to all

the ear er methods ck of clear onceptual foundations. We

showed in. Chapter Two s most fundamental weakness led to a

'plethora of problems -- vague analytic goals, unclear standard* to use

in judging anilytic.methnds, inefficient techniques, unclear definition*,

and a large set of points over which no general agreement bite been

reached.

Examining the conceptual, void mare closely, we pointed out

'the necessity to obtain a better understanding of the for* of the

system we want to know and of-the processes by which Ae gain that know-
,

ledge -- the processes of observation and description.

In the chapters. of this Part we start out at the beginning --

with a re-conceptualization of the concepts fundamental to the study

of systemS.' We beginin Chapter Three with an analysis of the form

of systems. Fori Lithe ultimate basii. The discussion moves into

Otherareas then,.with the introduction, f concepts one step away from.

form -- constraint, interaction, and elements. This is all still atj

the level.ofsimOle Systems. With the introduction of emergent proper-
(

ties -- properties due to the interaction of elements, we moire into the

realm of lex Multiple-leveled systems.. The same baiic concepts are

discussed in this new context, and the implications are explored. k The

'40
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discussion of interactions between complex s)Oims ends with the con -

ce- pt.of.informition:/which appears as A shorthand way of describing a

leLb1ass of ractions.
ne

Chapter our examines the processes by which we gain access
o , '

to form -- the Frodeiees of bservation,And description. The develnp-
-

*

meat of,this"chapter is parallel to*the development of
0
Chapter Three.

We begin Iiith an examination of the concept of description. This is

seen as a process of drawing distinctions, based on differences per.:

beivedin the form. The fotm of descriptions is elaiined and related

to the process of observation, which allows the differences upon which

the description's ilistinctibSA are based to be "seen." This is all
I

done_at the levekof simple systems. 'Again, with the introduction of

emergent propertieg1r4mP-fx systems, we move dnto a new realm 4

that of alternate descriptions.

The processes, of'obserVition and description in complex

multi - leveled' systems ariIogicelly very complex. We explore the

ramifications on the basi4 ideas is this compticated'aituation in the
#

!

context provided by the analysis of,Chapter Three. Since all °beer,

`ration processes-ire inte4action prOcessei, and since the observer

is asself-a system, the Oservation process is'limited as ate all
!.

interaction processes betikeeni, complex Systems. Ihese'liiitsi together'
,

`with the -ones inherent, in the process of description, place liaiti,on

the way complex systems moil beapproached. 'The chapter ends with A

discussion of ;lies, limits lin theContext of alternative descriptions.,,

Chapter Five pick), up at this point with an'examination of

structure as'theappearancelof form. If'form is what isstructure is

what the observer sees. AgAln, we go back to;basibi,,this time to
a

constraint and fora. Wedeielop the relation, between form and its

appearance; and here the'ce4trality of constraint is unique. The kinds
v.

of constraint that can be observed will deteritinewhat cap'beeaid

about the system being Ltudied. "Properties" 'are-biied bm constraints,

and thus contraintsidetermine propertleci' The Search for understand-

ing is thus a search for-constraints; which,aepear.to obseriers as

different kinds of structuring, in both sfabijand time..

a

1
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When we pull on the common thread. running througlisthe"dis-

cussion in Chapters Thai, Four, and get aAenerel a /ch

for studying complex systems. The startliig point -is Strpctur the
i -

appearance.of constraint. Wicall the pritdure'that fills oui`mi the

discussion a General AlOrithll-for Studying Structuring in Complex
,

.

Systems -- GASSICS. The introduction of this procedure ends the at ...

.4-
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CHAPTER 'THREE

11HE FORki OF SYSTEMS

INTRODUCTION

We heie seen so far how people have tried in the past to

analyse the networks of interrelati&ships among the Isenberg of social

systems. We identified the main problem with these approaches as *

IF conceptual one. Indeed, there was remarkably little in the way of. '

solid conceptual foundation for this-approach. We can look to the field

of "systems theory" to find just the opposite situation. Here is a

"theory" -- a very successful one, ifjudged in terms of popularity --

with no methodology (at least, not as it has been used in the social:

ciencei). It is difficult to7think of'a traditional sciantific'dis-

.cipline in which this "approach" has not been "applied." Biology,

psychology,. sociology, enthrollology, medicine, psychiatry, political

science, and econiiics are only e'few of the airs that have used the

concepts of the "syst approach." In spite of.the very'wide set

of areas using the eptof systems, tOre are serious problems,

.both with the "theory of'systems theory, and with the methodology
available to investigators who wish to apply the concepts to their own,

areas of interest:
O

We are interested hereim liparticular kind of rote' -- the

human communication system, in, which the'bekic process-Of control and

coordination of the parts iscoimunicition.:Now, concept central to

the study of communication is the One of information. All communical,

tion processes are at their core inforiation processes. Information; is

what is communicated. Without information there 4116 communication.

'The study of communication procesgesiii thus the study of information'.
process. ,

Indeed, in--aatica-is such a central concept that a whole

"theory" has beenlbuilt around it, called "information theory." Here

agsid, Ulmer, there are problemi. The ',theory" of information ire

43"
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incomplete and ambiguous. Different people have different meanings, for

"information." There is no "general theory of information/information

processing." Most discussions of information prOcessidi seem to be

either case studies) precluding generalizatiois to other cases, or else

at such a high level of generalitythat they say nothing about-every-
,

thing. The central concept of what is usually called "information

theory" (Sh,L;leli`gRd Weaver, 1949) information -- is a strange con-

cept indeed. The "theory" provides elegant mathematical tools which

"can be used to measure the amount of information, but "Only the

amduht ... is measured -- the amount does not'specifytie,conient,

value, truthfulness, exclusiveness, history, or purpose of the infor-

mation" (Biller, 1968, p. 123). We can only say haw much there, is,

and even this only in a highly restricted context. The theory does

not clearly say exactly what,this "information' is, in terms of what

it doss when it gets where it is goillp or how/it got to be the way

it was. .Because th"iheory'is not well devel a rigorou, metho-4.

dology fonstUdying information processing cyst ins to be seen.

A few attempts4 apply information theoreti once a to

human communication situations have been made (see, for

Garner,1962 ; and Danowski, 1074). In' many of th aPPli--

cation".consists merely ofthe use of the infdriation is as a

measure of varianceit he nominal Wel: "How such uncertainty is

there in this situation, where we have X alternatives with probabilities

of P1, P2, ... px?"

The use of "information theory"as inapproach to gain a,
better understanding of the communication protege as an information

process, (scientific) theoretical terms, has nqt been sam. This

is to be expected; given both the'egitionalorientation for dommuni-
.

cation research and the a -tieoretical nature of."infOrmation thedry."
.

At thii point many would argue that,the advent of "systems theory" will

change this. He agree that the systems approach is most promising, bin

this is an arei that is almost as young as "information theory"; and

it suffers from many of the same kinds of problems as the latter.

N

r-
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Although more people have written about systems or systems

theory than about information theory, the key concepts have yet to

be drawn together in a way that provides a consistent systems metho-

dology. Many writers usethe vocabulary of systems theory in their work,

and are able to provide more elegant descriptions of complex phonon.*

than could'be had with more traditional analytic approaches. Indeed,

concepts like goal -directedness are hard to describe within the tradi-

tional linear. framework of mechanistic s'ience, which has been so very

successful in the physical sciences. The vocabulafy alone provides

concepts that banish mysterious vitalistic forces like entelechy and

replace them with respeciable cybernetic control mechanism* and

emergent propertieewhich have clear founditions in the parts of which

the systems-in which they are seen are made.

The vocabulary atone is not enough, however.-- With the new

concepts we need new ways of looking at things -- we need a new

methodology -- new tools. Nowhere is this more evident than the

social sciences.- People say "We must take a. systems approach'," but

this seems to mean "We must speak the language of systems." There

are no methods that were developed in the context of systems theory,

no techniques whose assumptions are consistent with the assumptions

of systems theory. Up to now, the best we have been able to do with

these systems concepts, says Deutsch (1968, p. 390), .ii great them

qualitatively, by recognition or description. We have no quantitative

methods. Why is this the case?

One reason, perhaps, is because the mechanics of the pro-

cesses of observation and description, which include the measurement

and analysis of data, have not been considered to he,isimportant in

the systems situation as they really are. Our preliminary formulation

suggests that these processes are much more complex than has been

recognised. This is especially the case for infoEmetion processing

systems.

4-- In this chapter we examine the logical' orm ofosystemi and

identifysome crucial concepts that are basic to the paradigm we e

tiworking from. °A key concept is the concept of interaction. The at
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important, in terms of the impact it will haveonlverything we do

with systems, is the-concept of levels. Even more fundamental than

these most basic systems concepts, howeVer,,is the Concept of.distinc-'-

tion, as explidated by Brown in the Lafs of Form (1969).

Very simply, a distinction is a division. into exhaustive and

mutually exclusive parts, on the basis-of.sosie-difference-whiCh is

perceived by the observer. Distinctions are arbitrary, and are drawn
.

by the observers of system. A distinCticni is not drawn unless the

contents are seen to differ in value, end there can be no value without

motives. Thud the motives of the observer will determine his values,

and therefore the distinctiois he draws.

Our motive iatp understaid-cimplex information- prodessing
.

systems,in setters' and human commonication'networks in particular.

Although many.of the distinctions we draw in the formulation

of our model may seem to be highly abstract and Rerhaps even a bit
4

.mataphysical,Ithey have major implication's for the liter, more

concrete, aspects o the model and..the uses to which it can be put.

SpecificallYi they will determine the form,of the methodology we are'

proposing and suggest the directions` in which we will move with the

theory baited on the new paradigm.-

We start with a look at systems --.the context, in which

"information" makes sense. The kinds of system we will be interested

in are all multi-leveled. This means that the system'as a whole is

made of parts, Mich themselves are made of sialler,'slepler parts, and

so on.. In addition, the systems are complex -- taken as wholes, they ,

show properties not seen in their parts taken independently.

The suggestion' that information-ptocessing systems must be

complex (if a system is)complex, it must ilso be multi-leveled) stems

from, the notion that "information" acts on the system by influencing

small ,parts of it, rather, than by acting on the system in' its. entirety.

(Ix urns out that in systems which must either act as units or else

not at all, the capacity for "informatidn," as we will...define it here,,

is, exactly zero.) The requirement of complexity is associated with

the notion of what are called "emergent" properties -- properties due

.
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to the way the parts of theleystem interact. A systemith strictly

':\ additive properties, where the chaiacteristick of the system as a
-'

whole are directly (additVeli) related to the characteristics of the

piris of which it is ,1. oes not appear to process "information."

At this po t; it should be sufficient to note that'the re-
,

striction to complex systems is not counter-intuitive or illogical.
.

Included in this category of systems are units such as individual'

People, small organizations, computerized information processing

qP

retrieval systems, computer networks, and,aven large societies.
. f

are exactly the kinds of systems we are interested in.
,

We begin with some basic concepts, and from these we 'move to

a very simple and orderly kind of model. We work from this simple

model to one that win perhaps be sufficiently complex to help ua. see

how we can begin to account for some of the moreinteresting aspects

of "information, processing" systems in general and human communication

networks in partiteler»

.-

1. Interaction

Theconceptual basis for our'paradigm is exceedingly sing :

'Macroscopic objects *stems] are complex struc#ures of [miciosiopi ]

ones. The propefties and relations of the former therefore occur under '

conditions that can be forimulated in terms of the arrangements and

interactions of.the latter" (Nagel, 1961, p. Three ideas are

brought together here: system, arrangement, and interaction. A system

is a complex structure of smaller parts. These parts are arranged in

some particular way, and they interact with each other.. We stare with

the process of teraction, which ielogi ly the most basic of the

'three concepts.

We say one tity interacts v h another when there is some

co-variation of 'some roperties or state variables of the entities

involved. In other ds, there are fewer, degrees of freedom in the

interacting set of'entities than in the set of entities taken indepen-

dently. There is some constraint of the fieedoms of the entities, which

results from/indicates/is the interaction. Ashby says that the

59
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constraint is iheyrelation - - .it "occurs whin the, variety that exists

uMder,pne.condition [independence] is less ,then the variety that

exists underanother [intere4ion]" (1961, i. 130). Thus, when a set

of elititieais juxtaposed in. come space (spatial, temporal, or con-
.

ceptual) in such a way that the degrees of,freedom.of the entities,
4

when they are.in the set; is less. than the'sUm of the degrees of free --

,dom'of the entities taken independently,the entities are said to be

in a state of interaction.

For example, say We have two blocks of wood on a tabletop.

Now, each piece can rotate, or it can slide in any direction on the

table. If we count rotation as one degreemof freedom, vertical motion

as-mother, and horizontal motion is another, we see-that each piece

has three degrees of freedom of motion. (We have ignored velocity for

the sake of simplicity.) In the set of two pieces, all possible coa-
1

binations are allowed, and there are thus six (3+3) degrees of freedom.

Tf we t the pieces together so they interlock, they can only move as

a unit. The two pieces togethei'now hayethree-degrees of freedom.

The erection is exidenced by the reduction in thetotai degrees df

freedom of the systems-in this case, there is co-variation of move-

ment of the pieces in the interacting set. 'That is, if'one moves

vertically, so doss ihe other.

2: Levels

A second very important -basic concept is the one of levels.

Several points suit be made here.

(a) As a concept of distinction. First, and most importantly,

is the idea that the concept Of levels is a conEeptOf aistinctipo/

description -- itis artificial: imposed by .the person describing the

system. Since it is a concept of distinction, it should be defined in

such away that the distinctions we make by using the terms areboth

usef and consistent. It is important to be aware of this point, be-

caus the way we see things initially issure to influence the things we.

work with later -- the things we single out as important, the way we

perceive "things" or "dimensions" or "units," for example.
'

60
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() Multiple levels. The indication that there is one level

impliei that there must be/could be other levels. Otherwise it would

be pointlees.to distin

I
h between levels, and thus pointless to use

the term. Conversely, -ere can only be levels if there is a difference

between them -- *f a basis for distinguishing what is at one level from

that which is at another can consistently be'followed.

49

Alp Hierarchical levels. The term "level" is used to dis-
c

tinguish between classes in complex systems, which are made of parts,

which are made of smaller parts, and 'so on (Pattee, 1973). The hier-

archical nature of these systems leads naturally to cases in which

the elements at one level may contain or be made of elements at another

level. Thil fact implies that a different kind of distinction is being

made here than is usually made when one distinguishea.between kinds of

entities: that the present disilnction depCds, to aa'extent,, on he

reclationships between the uniteat one level and the units contained by

Or comprisin hose units. We might clarify this point by diffe ti-

lting between "vertital" and "horizontal" dietinctions as follow :

A horizontal iistinction is made between mutually exclusive entities.

The entities so distinguished must be separate and identifiable. A'

vertical distinctionhowever, is ma#e between,a class of some kind and

a member of 'that class, These are special kinds of classes, and this

idea will %e clarified in a little while.

"P

(d) Additive and emergent properties. We mentioned earlier

' the ideas of. "additive" ;and "emergent" -properties." The distinction

between these two kinds ofirropOrties is crucial here. Say we have a

set of elements of some kind. Each of these elements has several pro-

perties. We may combine number of these element* in some way to

form larger units. Now, the properties of these larger units can only

be due to two things: 1) the summation of the properties of the on -,

s'ginal elements that Kei combined to makethe unit; or 2) the result

of"the interactions betwee the elements that were,combined to make the

units Since the first type of property is obtained simply bx adding

up all the individual elements' characteristic values for these
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properties, these new propertiei are called "additive" properties. It

is not necessary to know how thwelements are related to each other in

the larger unit to understand the properties ot characteristics of the

larger unit. An example of this kind of additive property is mass.

The mass of a large set of objects is simply the sum of the masses of

'the individual objects.

Emergent properties are very different.. They become apparent

only when the original units, are combined into sets and allowed to

interact, and thus are called "emergent" properties of the Urger

sets or units. Two points should be evident here: first, the emergent

properties "belong" to the larger set of interacting elements, and cannot

in any way be identified with the elements taking up the set; second,

in order to undersitand how these properties come into existence and how

they work, it is necessary to examine the way in ch the elements

interact with each other in the Context of the arg r unit of which they

are ,parts. (Nagel had a'differentmeaning for "emerg ce7 than we, do.

He requires that a property arising from the combinati of aleients

into a pit be unpredictable, given both full knowledge f the proper-c

ties Of the elements and'full knowledge of the relationships' among thei

in the larger unit, before he will call it an emergent property. In.,'

hls.definitibn, an emergent propertycannot be understobd by,examing

the system-in which it is observed. It is a neWpropertyv it is emer-

gent, it Cannot be explained. We'disagree with his approach on this

point. [Nagel, 1961].) An example of an emergent property would be the

chemical properties of any element. These properties'are determined by
.

the way the protons, neutrons, and electrons are arranged in the atoms

of the element. The properties of oxygen, for'example, are not seen

in any proton, neutron, or electron. But put the right combination of

them together ?slim* at the combination instead of the parts of which

'it is made, and you have

even though ths protons,

still irotbni, neutrons,

oxygen, with a whole new set of properties,

-newtrois, and elicirons are still there, and

and electrons.

Our definition of,levele makes use.of these concepts: If,

asS result Of allowing S set of entities to interact, there are
4

6°4,

4"

or
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properties observed that are different from the properties of the an-

tities, taken independently, the set of entities is said to be at a

higher level than the entities making up the set. In other words, if.

there are emergent properties in a set of elements, the set is at a

higher level than the elements of which it is made. The emergent pro-
.

parties form the basis for the .distinction that is meant by "level."

If thtre are no such emergent properties, no distinction can be made,

and theset of elements is notat a higher level than the elements

themselves. If this isIthe case, it is onl,necessary to understand

the individual elements making vp the set ifne wishes to understand

the set. On the other hind, when studying an interactive set with

emergent properties, it is necessary also to study the way in which .

the elements interact with each other wh y are in the set:

(f) Levels vs. types. Another distinction: Levels arenot

the same as Vies, as in Russell's Theory of Types. In the latter,

any set or class is of a higher type than the members of the set or

class., In the,!Iresent definition of levels, however, the set is of a

higher level y and only if it shows properties different from those

Observed inthe elements takin independently. In other words, levels

are closely related to interaction: "the more the members of the

class interact ... rather( Ain coexist, the more does the auperordinate

group [the class] become ..ue individual rather than a collection of

individuals" (Gerard, 1968, p. 53). In the latter case, no new

level is observed; while in the former, a new one is, and is based on

the distinction. allowed-by the emergent properties -- the properties

resulting from the interaction of the elements.

(g) A warning. An important notion to keep in mind is the

arbitrary nature of any distinction-called-level. There are probably

an infiniteAnumber of ways in which a system can be described that

priserve the essential diatinctiens demanded by the definition of

level. The description that focuses on significant (useful, valid,

consistent) emergent properties will be likely to be arranged into

descriptively signifidant (useful, valid, consistent) level. What.is
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useful will depend on-the goals of the inv igator of the system.
4

What is valid will depend on the perceptual and analytic abilities of

the investigator; and what is consistent will depend on the proper choice

of membership criteria -- if these are ambiguous, the description will

be ambiguous,.and distinctions will be neither continent nor consistent.

3. Interactions Between Systems: The Form/Logic oUnformation

In, order for thereto be interaction between two entities,

we said that there had to be some kind of covariation of the entities.

An impoitant class of interactions includes all the cases where the

entities involved in the relationship are themselves complex systems.

The existence of multiple levels in the systems involved is the dis-
i-

tinguishing characteristic of these in eractions.

(a) Interactions and levels What does it mean to say that

twp complex systems are in a state of interaction? It means that'there

/it

is some covariation of the systems involved. Very straighifftward.

But complex systems have different kinds of properties; Some.are

* additive while others are emergent. Which ones eke covarying, and

what is the difference? When I interact with the computer terminal

on,which I am writing this chapter, theinteractioninAlvetemergent

properties. My conscious thoughts (an emergent phenomenon) usually-

(sometimes I make errors) covary with the letters that appear on the
1 f'

paper (an emergent property.,ofthe terminal, determined brthe way its

parts are related to-each others and by the way the computer was pro-,

grassed to behave). BOt how do ILet.any single letter to appear on

the page? By striking a key with my finger. Isn't the interaction

between my finger and the key similar to the one betweeri two billiard

balls collision course? Indeed, when. viewed at this level; the

interact on involves mainly eddiiiie'properties, even though the same

interaction, when viewed from the point of view of the whole system,

involves emergent phenomena.

--These two kinds' of interactions are fundamentally different,j- 0

and this difference must-be recognized when studying complex systems. N t

4.

6'
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(b) Matter/energy.fiateiactions vs. information interactions.
c,-

The two types of interaction introduced above can be more explicitly
.

40
distinguished agfollowsl Tk e firstitype involves the covariation of

additive properties of the tom ystems. Either the tens interact

directlz, estab ishing the covariation of high levelproperties, or

they interac at a lover level, such that an indirect covariation of

the additive roperties at thihIgher levels of the sAtema isestab-

lished. These interactions will all involve matter and/or emergY-
.

They are clearly understood by applying basic physical methods of

analysis. An example of thietype'of interaction is seen when one

billiard ball strikes'' another. A second interaction of this type

occurs-when I am struck"by a milk truck when I attemplio cross the

street. The'mmmentum of the truck is partiallyiransferred directly
.

.

to my body in such a way as to keep the total momentum of the system,

ii=ludiniboth,the truck and my body, at a constant. In these cases,
lc tilt first law of thermodynamics is obeyed. The total amount of matter-

and energy' remains constant throughout the interaction. These inter .

actions are called matter/energy interactions, becaUse they involve

exchanges of matter and/or energy.

The second type of interaction involves the establish4nt of
.

covariation between emepent properties of the systems. Since emergent
4.. ,

propetties are due to both the propeikies of the elements at loser

levels and the way they are related So each other, interactions involv-

ing emergent properties must involve both the elements at lower levels

and the reiltions between them. The interastions with the lower

keleeents may be matter/energy interactions: The effect;of tie inclusion

ofthe relationships between the elements as-we move from 1L to thigh
...-

4* revels'isto make the actual form of the covariation at the higher

2 level different in a cvacial way from the one at ,the loser level.

ipecifically,'ihe actual:iorm of the variation at the high level will

be determined bya combination of-the form. of the interaction at the
.1y.

lower level'and the form of the interactions between the parts at the

lower level.

4

4.
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, really quite simple, and can be clearly illustrated

with the example 'of the computer terminal. The covariation at the

high level involves a matching ofimY conscious thoughts with the letters

that appear on the page. This covariation is established by my strik-

ing of the keys of the terminal. When I strike a pirticular key, the

thing that causes the particular letter to appeary,is the way the parts

of the al are arranged. If I change the, connections between

the keys tithe letters, different lettere4;111 appear when I strike°

the same keys. If I cheap the 'program governing the, way the-text

dditor works, some letters may even cause the entire text to be erased.

bue to the primary interaction at the matter /energy level, 'combined

with the particular organization of the machile, the secondary covariar

tion involving the particular letters that I wait is established at

the higher level of the /system.

-These secondary covariations covarlations at higher levels

involving emergent properties, and due to the primary matter/energy

covariations at lower levels -- have some unusual characteristics. One

is that the conservation law does not have to be obeyed in these inter-,.

actions, although at every step along the way it is obeyed. The reason

for this is because the system Ay have its own source of energy, which
.

is included in the proceis because of the way' the parts are arranged.

This is the'casi with the computer terminal, which is electric:'-the

letters strike the paper with much more force than my fingers-strike

the kegs. It doesn't matter if I, press the keys harder; the letters

strike the paper with the same force. A secondunasual.Characteristisc

-of these-secondary covariations is that they are arbitrary, in the

sense that they depend on the particular organization of the parts of

the system, and not only on .the form of the primary interaction. Be-

cause of these characteristics, ifitarictions-involving secondary co-

variations of emergent properties are called 4 information" interactions.

(c) Information. This choice of games is consistent with
6

other models of information: Deutsch (1968) writes that "Unlike

t__«__t and 'energy"infomation' -- that is, the Pattern that can

ti
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be abstracted ... [from these exchanges] -- is not subject, t6 the laws

of conservation. It can be created and annihilated" (p. 392). other,`

'definition of information requires chit a "marker" bearing a pat ern

be exchanged in information exchanges. The marker is not the informa-

tion, but bears/ he pattern, which is the infomatiOn. Berlo called

information "patterned mattet/emergy." In-an information interaction,

the unitg-at the4rw0evel of interaction, that is, the units

involved in the matter/ energy part.ofthe interac on, would be the

markers bearing patterns ihich are'"informatian°. o the system as a

whole. Ae far as these units are concerned, the interaction Ss strictly

mattir/energy,mbile, it the larger of the system which is con-
.

nected to the elements by 'emergent phenOmena,,phe interaction may be

an information exchang" For example, a light pattern impinge'

,your retina. This is a purely matr/energy interactoton,as,far,

the cells of ynnrretini are concerned. if-the pattern hap

form letters and words which make a'sehtence,the larger syst

the potion that kyou may "receive some information" from the,inter-

&reg. Whether or ntit this is the case will be impossible, to tell

by looking at.youretina; it is necessary to look at the way the-

retina fits in iiith the rest of the system, becau;1- this is the context

in which it,functions, and the context in which the interaction must

interpreted.

Ibis framework suggests a different interpretation of "infor-

'mation" than the. urely quantitative one of Shannon and Weaver (1949).--

Ttieir framework was one in which only the relation. between the observer-

the 'pattern was important.: The framework here is one in which the

parts of the syseem'at one level are related to thearts of the Osten

at other levels.' In this model, the Alative positions, "in terns of

levels, together'with the specific nature of the yelationships of the

parts at one level to the partsof other levels,.are important. The

observer is describing what he,sees (or thinks he sees) of the.Aross-
.

1 level relationships, but he knows the stateMents betakes are aepen7

dent on the relationships betweehimself and the, system.

V s

4
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One point suggested by this model (perhaps implied in its

definition) is that information interactions ion only take place in

systems of complexity sufficient to allow-the interactions to take

place at some level oi7er than the,level of the systems themselves.

This is because information is represented as patterned sequences; /

56

A

which are conveyed ,through the markers which are exchanged ii,informa-

tion tratsactiona. The markers must be,at a level lower than the,

system as a whole, or else, the 4ystee would be capable of receiving

zero information, since it would have to covary identicallyrWith_the

marker if it were. at thee same level.' On the d, matter /energy

interactions may take Idace at the same level as the whole .system, and

thus complexity is not required for those interactions.
4

Another point is suggested when this model is: examined in the

light of Ashby's LaW of Requisite Variety, which states that uncerpality

in one system can only be coipenliated for by another system to the

'

;

A

Alk

extent to which the cospenkiiingsystenl'has sufficiiat variety. In
>,

other words, "variety can only be destroyed by variety" '(Ashby, p. 135).

Applied to systems in the contef our model, ,the law says'thet if

a complex system is encountered/by a simpler one, the covariation
)

established as a result of their interaction Can be at a,level that is
A

no higher than the highest level of thesimpler'System. A simple system

cannot interact with a complex one because thereis not enough variety

in the simple one to Accommodate that in the complex one Therefore,.

it forced to encounter units of greatertcomplexity, eleients 1

!interact with lots of _those units, rather than with the un t' s as MP

wholes. e

A general interpretation of this la for matter/energy Systems' A

reads much like Russell's Theory. of'Types (14717, which would/say that

elements can interact only with other elements s/he same compIexity.

If forced ts en counter a unit Which is a set of elements o0iMilar

114.. complexity, the f irst 4enent will not interact with theet as a -. k

whole; rather, it will'interact with a slier of the set. This restric-

tion seems to hold for matter/energy systems, but foils completely when

information,interattioni are allowed: The nature of this failure and

r)

e.

el
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the reason it is of interest are due to the way information is related

to aatter4mergy. Recall the distinctions made earlier: 1) informa-

tianexchangesditaind -44ause--there-austbe---levels-

below the level of the system, on which the markers bearing the pat-

terns! which are the information are exchanged, in order for there to

be information exchanges; 2) the'effects of the exchange-of matter/

energy patterns at low levels must be conveyed to higheilevels

through emergent properties created by the interaction of the lamed

partsof the system. This iapliei that, in any inforiation exchange,

thoriaugh understanding of ode'of the interacting sylltems is not suf-
.

ficient to predict "the effects of the ,exchange on the other system,

unless the two interacting systems are identical. This is a direct

result O f the-arbitrariness created by the emergent properties demanded

by the definiAon of information. It also implies that'the pattern in

the exchanged markers is free of information unless' viewed in-therCiCSL.:'

text of the system which'processie-that pattern. There is no meaning

1.n the pattern. ,It is impossible to measurethe information content

of the pattern, as long as the nature of the system which must process

that pattern is unspecified:

The interdependence of what we have been calling infOrmation".

ink' the system in Which it has existence/can be Observedlcan.be measured/

males adifference cannot be underemphasiked. Information was defined as

something that required some kind of patterned matter,/energy. It has

also been defined as 1"difference that makes a difference." Thii

alternative definition implies that a context is neided before, there

can be information. This context. is the system in which the pattern

"mekei a difference." Therefore, any patternmay become information,

if there is a system that can process it correctly. This is not to say
A

that, for a given pattern and two processing systems, A,and B,tge

"information" "extracted" by system A will be the same as that-extracted

by system B. Indeed,. system A iii4be a subset of system B, so that in

system B there is as extra level of emergence transforming the output

of system A, which results in a higher order of "information" from the

% same input..
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Depending on the way the parts of a system are interrelated

at each of the many levels there may be in the systecC,'a given matter/

qt.

r

energy input at a low level may have differing effects on the system.

Some inputs may remain at the level of matter/energy, influencing higher

levels oily through additive properties; while others may be processed

as information, influencing higher levels through emergent properties.

Others may do, both.

CONCLUSION

In this chapter we have expVrea the form of complex systems.

Although most of therdiicussion was concerned with the establishment

of.aprecise vocabulary thiough the explication of some - crucial con-

cepts, we did,point out some,general propertiei if systeMs. The

importance of some of these properties especially the onesrestrict-

ing interactions between systems of different types -- will be brought

out in thenext chapter, when we look at the'processes of observation

and description. -

Cr.
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CHAPTER FOUR .

THE PROCESSES OF DESCRIPTION AND OBSERVATION:'

.ACCESS TO FORM

In the first chapter of this Part,we examined the form of

systels. We chose to start there because we felt'Uneasy about the way
-

people have looked at systems in the past, and because we felt that

our dissatisfaction was caused largely by an apparent mismatch between

systems and the way we perceive, observe, describe, and (ais)understand

them -- in short, bycause we don't know how to,"look" at them., In this
.e

section we discuss.the process by which, investigators gain access to

the form of Systems: the proaeeeds of description and observations

We contend that a major goal of all science is to provide

accurate, useful descriptions of phenomena in the world. Descriptions

allow us to understand, to explain,/to predict. More and more, we are

faced with problems involving complex systems: the economy, congress,

towns, corporations,-school sista:1s, the armed forces, the United

, Natiofur. Clearly, we would, benefit greatly if we could understand,

'explain, or pre4ict these systems* If we could provide ourselves with.

the right kinds of descriptions of these systems, we could do these
,

things.

We co:me:idyl, therefore, that antunderstanding of the process

4by which 3e piovide descriptions is h fundamental necessity. 'But first,
44,

we must ondersand what a description is -- what is does, how it is)4.

constructed, how it is related to the form of the thin* let% described.,

our deicription of the form of descrietion.,, we Make use of the

,Analyele oNoWn,4in'The Laws of Form, (1969)." .

4

1 to A

,

1,,

1.'.The rm of Descriptions

A

4. eir'',aiStinCtiOnti values, motives. All things hive their, A

I*

Ala

own form. Form iity be equated' differonce. If, the universe were
uniformly homogineoos,"Withono differeades, nothing could be perceived;

:

59
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everything would be the same. There would be no objects to be studied,

no observers to examine them,no form.

Descriptions are based on distinctions. A distinction i made

by an observer who perceives a difference and points it out. The ,dik=

.ference is the basis for the distinction. Wherever adiflerence exists,

a distinction may be made by an observwho perceives the difference.

Any difference that may be' perceived may be codified as a distinction.

The drawing of distinctions is an arbitrary proceSs, governed

not only by the form of the thing being described or the attributes of

the observer that allow differences to be perceived, but alsO by the

motives and values of the observer, for distinctions cannot be drawn

unless the contents are seen to-differ in value -- and without motives,

there can be no vales.

Implicit in any description, then, are motives and values.

Why were these particular differences singled outes important, when an

infinity of other differences cOul be perceived instead? Because the

motives of the observer defined i set of values or value differences

that mattered. For example, I may, distinguish between the two ends of

a pencil (or between the ends and the rest) if you ask me what it is

used for. "It is used for writing and erasing." But perhaps you wanted

to know how much the pencil weighed, or what kind of tree the wooden'

part came from. These values would be relevant for other motives.

'The' description is related tow the thing it describes in an

abstract way. Whereas the fOrm of the thingis completely manifested

in -the thing itself, only certain selected affects of the form are in-
corporiiid in the description. The description is incomplete.

The-form of the thing being described iscontinuous.wir the
thing itself. There are no distinctions or discontinuities in the form;

these are introduced by the observer, who makes distinctions. Distinc-
tions are digicrete: abstracted, codified perceptions removed from the

thing being described. Since the destr
f

iptioi, is basedon distinctions,

it too will be discrete, and not continuous, as the fora is continuous.

The description is imperfect.

1-
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(b) Descriptions and complex systems. Since the form of
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wcOmplex systems,is complex, the descriptions We 'make of these systems

may also be complex: we may base our distinctions on several kinds of

differences:4. First, foreximple, we differentiatelbetween the system
.11

and its environment. We might cal) the points.thiough which we draw\

the distinction the "boundary." Next, we may differentiate the system

as a wItole distinct parts, if these parts differ from each other

and from the whole system in ways that are relevant to'our motives.

Furthermore, we 'may distingash between different parts of these

parts .... are all vertical distinctions, where we are differen-
.

tiatini,between units and parts of those units.

-
Alternatively, e may differentiate horizontally between

1P

classes or sets of parts, at any'level in the system. Obviously, the

level of analysis we choose will specify the units we work th, which, .

in turn, will determine the kinds'of distinctiOns-we make Moreover,

the description we get using one set of distinctions will not be the

same as one based on a different set,of distinctions. Yet both are

descriptions- f the same system, which has only one form. The distine.:

tions must be equivalent in some sense.

W /PerhapsAnexamp1eanpexamie will help make the com-

plexity of the situation clearer. .Take a relatively simple complex

system:, a cupful of boiling water., Water is made of vat= m4culss,
which are made.of 4drogen and oxygen atoms, and so on. The boiling°

water is a "liquid.' It "flows." It "conforms" to the Shape of its 0

container. 'It is not "compressible." However, if-we examine the part?

of which it-is made, nailly the molecules, it doesn't even Make sense to
`refer to the properties of "liquidity" or ',incompressibility." You

'cannot "boilh or "pour",a moleculgeof water,'although you can 1.'hoil"-'

or "pour" a cupful -of them.

What'i going on here? Simply this: The propeity of "liquidity"

with all i4s associated characteristics is spemergenytoroperty. It is
due to the interactions of the partsok the system ,-- in this case, the

'molecules. We could hkte described each of the molecules in the cupful
of boiling water, and this* description would have to be consistent with:
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the one where we described-the whole cupful instead. If we had focused
.r

on the individual molecules, we would have found nothing strange abeme

the behavior of any single one. However, we would not have seen any

evidence of "liquidity:" Only when'we look at the whole set of mole-

cules, andtreit the set as an individual object, woulde see the

object -- the cupful of water -- boiling.

(d) Alternative descriptions. Thi4odd situation; where

there are two equally valid -- but very different -- descriptions of

the system, occurs whenever we examine a multi-leveled system at an

interface between levels.

Because of the e elemek nts interact, the system one

level up "behaves diffe ntly." Lathe example, there were emergent

properties which we usually identify as the characteristics of water..

What we mean by "water" in most cases is "enough water molecules to

, )(
allow the charactet4stic emergent properties of water to be manifested."

It is not that the molecules are dramatically different in the cont t

of the more macvoscopic "water"; gather, we ere used to seeing large a

numbers of water molecules, where we can easily observe the results of

their interaction on a gross'scale. These results are so predominant

ttat,in the case of water, we "see" mainly emergent prdperties.

This idea of alternative descriptions provides a lore complete

wieof looking at levels. There is nothing contradictory or mysterious

here; although the way in which a description at one.)evel is related to

one at another level may not always be.clear. The shift wm make when

going from one level to, another !,s sia shift fromCdiscrete descriptions

of individual elements to statistical descriptions of sets of elements.

e.Pe. [W]hile in classical mechanic* At variables.of system state, are

associated with properties of the individuals postulated by the.theory,-

in quantum mechanics'the state variable is associated with a statistical

property of the postulated elements" (Nagel, 1961:p. 308)x, At the low

levil,"ligh " is,particulate, like molecules of H20. 'At the next level

up, "light "' is a phenofienon, much like grater is a liquid. These

are'two alternative'descriptions (of the same thing, each one equally

valid.

4
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(e) Transformations. How can we go.from one level -of de-

scription to another? The transformation from a low level to a higher

one seems to requires statistical proceis, whereby properties of,%the

aggregate are deliEribed. Accordingto Nagel, we can characterize the

system " ... in terms of certain statistical properties of the inaivi-

dualolotions of the molecules: These statistical properties are repre-

sented by statistical parameters; and it turns out that a number of

these-parametersare associated with magnitudes of observable macro-

scopic properties ... " (1961, p. 291). It seems to be posSible in

some cases to predict Wily the properties of the higher level should

be, given a knowledge of both the properties of the lower level elements

and the way they interact.

Going up levels, the.traqsformation seems to be determinate,

ip much the, same way that there is always a unique mean for any Set'of

numbers. We might call each possible arrangeiat,of the microscopic

components of the system a " microstate," and similarly, the experimen-

tally identifiable properties ofthe system as a whole the " macrostates."

Then we can develop a theory which " expla s the occurrence of the
.

microstates of a system in terms of assumption concerning changes in

the microstates, sp that the explenatlbn. spends upon the institution

of correspondencfs between macro- and microstates. .However, the cor-

respondences are usually so specified that to a given macrostate there

corresponds not on but_a large number Of different microstates" (Nagel,
, .

31961, p. 114). Because of the many-to-one nature of the relation,

transformations in tile otheedirection'-- from higher to lowei leyels

are not so easy. Indeed, they may be impossible, in the sameway that

it is impossible to tell wh4h numbers were in the set of numbers that

had a mean of 7.239.

(f) Rroblems! The statistical nature of the relation be

tween micro- and macrostatee is not the only, difficult we are faced with.

The descriptio6 of thelaicrostates,like all descriptions; can only be

' an abstraction from the actual objects being described: IlthoZt thea 0' .
microstates may be continuaes, their descriptions will be discrete, and.

..-

f e
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thus imperfect. There may be many aspects of the microstates that go

together to produce any given macrostate; some of, these aspects may

be left out of the microdescription. Unless the microdescription is
t

complete, it may not poas4de to derive the macrodescription

it. What is more, some of the releVant.aspects of the micrditate ma

not be evident in the case of individ4a1 elements -- they themselves

may require statistical descriptions.

We can begin to.seehow the process of description'is made

More difficult in complex multi-leveled systems. At each interface

between levels there are alternative descriptions .one describing

ore microstaie and the other describing the macrostate. Usually, the

description at the higher level will be simpler'more elegant. For .

example, different descriptions can be used for the process we comdonly

call "thinking." In the higher leverdescription, we would perhaps

taik'about the topic of the thoughts, or the logical process'that we

k were, trying to accomplish.. At a lower level, we would talk about the

neurons that were firing during the process! "Clearly, the description

. at the higher level''is simpler. It is more easily done, and more easily

expressed. It describes the system.as a whole, rather than'as a large

number of parts.

the microstates -

In this

However,it does not provide any.information about

- about the lower 4evelelements .2- the neurons.

case, as in most, the transformation from microdescrip-
,

macrodescriptiOn is determinate, although the one in the other

diiettion is not." (There are many kinds'of thought protesses, and they

all id*ve different sequenies of neuronal firings.)

.

2. The Process of Observation

In order to describe a system, We needto.be'infOrmed abodt

The latin root for the verb "inform" --'in4forkare) -- gives a clue as

to what it means to be informed about something: literally, +

"form" -- to have within oneself the form of the object. BY "the form"

. of ,the object, we mean the basis for all the distinctions we could draw

"about the object; based,on differences that can'be perceived in the

object. This.is,exactli'.what weiMean by a model -- a model of something

has/is the form of the object it re-presents.

I
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Unless we are merely speculating and playing' with ideas, pur

models will be based on the results of some observations we make. In

ft

daily discourse, when dealing with common 'situations we are familiar

with, the' bservation process seems to be so straightforward that it is

usually ignored. If we want to know if it is raining, we look out the

window. If we want to know how a car works, we look under the hood.

When we wantto learn him' a complex system s, however, we are faced

with a different kind of'situation aJ.togeth . An understanding of

,how we make observations and what we can do with the results will help

us see how we are limitOd.in,the observation situation; an understanding.

of the sources of limitation will allow us to develop methods that in-

crease our observat nal capabilities'. We begin this sectiOn, then, with

an examination of the observation process.

(a) The goals of observation. When we want to understand

something, we observe it. We do this because we do'not know what the

object does, bow it works, orhowit is put together. We have some

uncertainty about theobject. The,main goal of observation is to re-.

duce this uncertainty. When we ha e done so, we will have an "under-

standing" of the 'system -- we will e "informed" about the,aystem-- '
t

we will have built a conceptual model which incorpbrates the form of

the system. We-can then use the model to predict, describes or explain
.

. ,.-the behavior of the system.
.

. .

.

The model is Pseful because it mirrors the system it repre

sents. It is isomorphic tothe siystem in,such a way that it can be

used to predict or explain what t*system will do in a varieJPof

circumstances. It can also be used heuristically, to understand pro-.

parties of the that were no dent before the model was

111111a

_

\

elailable:
g

observer.The obaerve will usuglly b with an informal mod ,'in.
iiIM

;hich there is much vagueness and little explicit detiail.! This is'

. becauiethe observer is still uncertain as to the structure and func-

tion of the system being observed. The goal of observation is. to reduce

this uncertainty. When this has been done, the model will covary, with

its referrent this is what it meane'tobe isomorphic. .

4
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(b) Observation and interaction. The reduction of uncertainty

-- the establishment of covariation is not only contralto the obser-

vation process; it is the basis of the process of interaction. In

order to observe a system, it is necessary to interact'with it. In

order to get data that indicate howthe system responds in such, and

such a situation, it is necessary to observe it -- to.interact with

How else is the uncertainty about the system to be reduced?

it.

, - Aren't there situations in, which we get information about a

system withoJt interacting with it? For example, I don't have to 'inter-

act with the sky to see if it is raining, do I? Although the answer
i

may seem to be stretching the point, I do.- One aspett of the sky is the

way it alters the light that passes through it. Unless I get in the,

way of some of this light, so that it lands on the sensitive parts of

my eye, I cannot see the sky to tell if it is raining or riot. True,

this kind of observation/interaction doesn't seem to have much of an

effec 'on the system being observed, but it is an,ihteraction. What if

I were blind? I could listen for the soundof rain. But then I am

interacting with the.sound waves .... Unless there is sopelind of

connection/interaction between the observer and the syStem being ob.,

served, there can be no observation, no data can be collected, and the

uncertainty the observer has a)out the system cannot be reduced. Thus,
e

it, is necessary to interact with a system in order to observe it.
. n 4

Observatit in complex systems. We are interested in
. .,

observing complex systems. Toll? this, we have to interact With them

to'gethe data. How do wiprbceedT Do we treat the'system as a singled

unit, and interact directly with the whole? Do we interact instead with
"

the parts of whtLchit is made? Or
.

wIth the ,parts of whitethe parts are

made? QbViously,we begin by making some' decisions. Our goalk; in

terms of just what it is we are trying to understand, will he us de-
,

fine the system in clear enough terms so we cliU rule out, a 'number of

approaches'before we have begun. if we 'want to understand the struc-

ture of the system -- the waYVits parts Are orggaized we won'e.be

very interested in the way the system'relates to its environment, or to

N
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other systems like itself in the environment. We will, however, be

very interested in factors more direc.t.i;`zelated to the organization of.

the system. We:will look at the kind of parts it may have, for iniiince,

and we will want to know some of the properties of these parts, to see

if they provide a better understanding of the way they can be related to

one another in the context of the whole system. On the other hand,.

ii we ,want to see how adaptable the system_ is, we will want to see how

it responds to environmental'disturbances of different types. Wewill

be more interested in how the system as a.whole behaves'in a variety of

situations.,

A clear statement of the goals of the investigation will'help

Irdecide both how to define the system and also how to "enter" it ...

ed(
how to interact wit it' o get the 4ata that will be useful. The deci-

sion of bow to ter,the system is influenced by,many factors which can
l

best be understood from the perspective provided by the basic systems'

concepts we outlined eviler. Since we have a system, we can
. ,

.

eater it at any of its multiple levels; that is, we can obtain our

data by interacting with Vie system.at any level we choose. Our Choice,

of entry points will determine'the kinds of data we get. This choice
.

is limited both by th:L;111Keints,that are due to propsties of the

system and thoie that aredue to prtperties of the observer,'who himself

is a complex system. The next part of `the section will discusi thes

lonstraints. .

,

.
....s,

3. Constraints on the Available Data

in this section we will see how the goals of iheAbserver
together with certain organizational characteristics's:4 the system are

logically related to the process of.observation,and description in

complex systems. _Ns

(a)- oals of the observer and levels of the system. When

we interact with system at_ecertain level, we get data which describe

the system at that lbvel.' Therefore,' if oueioel is 0 understand the
4

System at a certain level, we should.enter it at that level. This is

p ,

A
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41the most basic nsi ration hen
)

choosing an entry point. This...may not
A

be enough,.however. Al ough data fram
A

level X may allow usto.describe

the behavior of th system at level XI it will usually not provide an

understanding of wh the things observed at. level X are the way .they

are. To achieve a sa ingiunderstadding of what happens at a general
A-

level; it is usually necess r to examine the system also at the,itwo or

three levels directly under the tar: 'level. Additionally, it may be

very helpful. to see what happ t one r two levelsabbve the target

level. This will allow the adcro4opi details of the lower levels to
e '

be seen in the context of the mor nacro opic details of the higher

ones.

Let's say the,target system is a ha ftone photograph in a

newspaper or magazine. We can understand h the different shades of

grey were achieved if we examine the dots Vlack'and white that make

up the picture. But 4e cannot understand Why the different areas in
0 .

the picture were different shades of grey ess we,see how they fit

into the larger context of the whole picture. In that context, some

shades will be highlights, while others will be shadoti. All the\dots

together will form., single picture. Again, we won't know why. that

particular picture was used unless we examine it in the context of the

story it illustrated. Similarly, if wewant to understand the behavior -

of a, person, we will learn how different motions are accoiplished if

we examine the physiology of the person; but we won't know why any

particular sequence of behaviors was' xecuted unless we put them in

the larger context of the social system theperson is embedded,in.

(b) Emergent properties in the observation context. /One

/I

*

reason for the requirement of looking at multiple levelsis that the

properties at any given level'may be'emergent, and thus dependent on

,more-than just the properties of the elements at lower levels. It is

much easier to work with emergent properties at the level on which

they operate, than it is 0 work indirectly through/lower levels.. In

order to "reach" the emergent properties indirectly, it is necessary

,to understand both the properties of the elements at the lower level

80
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the way those eledents are,r"lated to each other. In this way, it

is possible toAredict emergent p operties. To do so successfully,'

hoyever, is a difficult task: This is'because the lower level elements

may berelatedlo each other in complex_ways that may be difficult to

desalbe or observe. Only some aspects of these relationships may in-

fluence the emerge& properties at higher levels. Unless the proper

8:!1:sei
of thede aspects is included, dt will-not be possible to .pre-

.

diet the emergent properties.( -

When.the'system is examined at multiple levels, however, it is.

possible not only' to predict the characteristics of the emergent pro-
.

pertiei, but also to verify the.yrediction by comparing it with the

actual observed properties.
0

So,far the discussion of emergent properties has centered on

the 'possibility of explainift or predicting them from below, with data

collected at lower levels of the system. /Set' it also possible to
%.

.
.

-A-understand an emergent piopeity by coming at it from above, with data

collected at higher levels of the system? Generally, this does not

seem to, be easily doSe. Consider-what it woad mean: we tiouid-be.

,makikginferences about It property at A lower level from data describ-

A ing a hailer one -- we wotiid be guessing ,blindly abOut the complex

origins of the emergent.prbperty. Recall how these properties stem

from two sources -- the properties of the lower level elements and,

the set of relationships b tween,the lower level.elementek Not only

mould we have to guess i;1) t'the properties of the hypOthesixed-elements;
--3

but alto would be guessing.about the way*, they were related to one another,

even though their very existence is uncertain, nude we do not have data
.

obtained from their level. .

. (c) Alternative descriptions:escriptions: -descriptive,isymmetry. We

said.earlierthat whenever we look at a system at shierarrcal inter-
f .

.

/
fAce; there will be alternative descriptions of some phenomena ---'

descriptions that will be equally valid, in spite of their great differ.- ,

nces. Generally, the description at the higher level will/be much ,

-

/ -

more elegant and simple, but it will not provide much information about

4011i ' 0.

N
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the lower level aspects ofthe situation. For example, Ian describe

an operationOerformed.on a computer in different ways. L could .say,

"complement the bits in word 504432. Set all the bits in the Next

word to zero. If the first bit in tie word Wit' the address whose ,
.

value equals the contests of.iord 503325 is a one, complement the rest ,

of the bits in that word ... " AlternatiVely, I could' bay "multiply
.

the value of variable X by '1.ralk.of.ivitriable Y. -If the result is

positive .... " Each.d ckibee a matheatitical m$61:4on. Clearly,
.* .

the second.demetiOtion is more elegant; although it gives no informa- \ "

tion ..bout the Specific It operatiOnstthet are done when the multipli-

cagip and test are aoni,. Furthermore, althOugh Icould arrive'at the

second description if Olien the information in the first, it would be

impossible forrinetoaerive the first, giVen the second.
..-

Alternative descriptions are, related to each other by a,
....2

statistical process. When moving from the lower level to the higher

'one,we shift from a focus on properties of individuali to a focus on
0

the properOes of the aggregated'individuals. The description of'the

aggregate is the higher level desCription:- Although it is possible to
1 -

transform, low level data,to higher level data, it is not possible. to go
. 0

in the other direction -- given the characteilitics of anaggreagate, 4mm

it.is generally not possible:to derive those-of the individuate in t

aggregate. 'For this reason," data'from levels lower than the targe
Alevel are more valuable than aeAlpfrom higher levels.

-

(d) Summary: To.,summarize01 is desirable tmobtain data..

by interacting with each of several levels in the system being observed

-- both from'the levels immediately below the target level and froM the

levels directly above the target level. Became of the way the low

.
levels are related to higher.Ievels, 1Jrterms of bOthiunctional

arrangement and descriptive characteristics, clapa from lower levels ,is
v

often more ttenfuland iMportant than data from higher levels,;Athough'

,the investigator's task is made easieW data are also available from . .

/

higherolevels. If data are only avaiMble from highe; levels, it may

be impossible to make any definieCie statements about lower-level
.

phenomena. -

06

,
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4. Dealing with_ Constraints ,- Tools ,-14

The main difficulty in the study of complex systems,"spe-

cially when communication or "information Processingffl are involved, is

that dhta areoftennot available fLom the appropriatd level's.* It was
.

. , .., .., .

an understanding .of the logical nature of the hierarchical interface
.,---

that made this difficulty clear, ai 'it is through this same-Understand:
-

ing that we can develop methods that will allow us to go past some of /

the limitationa_we are currently faced with. Once this has been done,

we cam begin-to solve. acme of the problems that more traditional methods

efail to recognizh. .

We find ourselves facjwith two kinds of situations. In

,

the first, we have data from a leVel.higher than the level We wish to '

,

understand., The best we-Cap do in'thesev.ises,is guess about the% , .

rower-level phenomena ivit whic'n we are interested. The.reason for this.

has been disdUssed earlier. In the second case,.we have data from a
d

lower ulevel than the one we wish to understand. Manx\situations in-
4

volving complex systems, especially information processing systems, .

are ofthis-type. We consider two characteristics of the hierarchical.

interface:,, (a) F rat is the statistical nature of. relationship

between lower level descriptions and higher level descriptionsecif the

same phenomena,' which-. suggests that any analytic methodsmdesigned to

provide high level descriptions will use statistical methods,-rather

than precisely-exact.matheiatical solution- fielding approaches. The

exact nature c1,4 the statistical transformations that should be'uSed3

however, is not clear. In some casess'patteru-recognition techniques'

seem to work best. At any rate, or theoretinal.work is needed if,we

are to understand' fully the logl:c,of alternative:desciiptions.

(b) Second is'thefact that emergent propertiea'must be 'examined ig

the light'of 'the relationships between the lowev-level componenti of

the,system,,which suggests nthat any methods designed to explain emergent
e

properties at,higher leveld%will examine the. relationships between low-.

level units., . Agaid,.vedo not yet1 know how to, tell wbrich properties

the.low71eVel parts or which :aspacis Of`tge relationshiVS,between.the

low-level-parts are importamt in determining the mirgent properties.
, This area also needs more theoreticiii exploration.

.
.

t s
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At tnyrate we *now thayanilytid methods .will have to look
-

'for, statistical splut4ods -.to alternate des iptions and includdOihe
lit

network of relationships among the parts of e system for expladations
. .

, . . ..

l"of emergent properties, such as " information, " ,flOommunicatioft," or,'

Pgentrol" processes.

4

I
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t CHAPTER FIVE

SAUCTUEE: THE APPEARANCENF FORM -

a

.

-Chapt Thteelflusentitled "The"Form of Systems." Chaptet
.

Four was about ceis to Form: The Processes of Observation and

Descripttion."` those,:chapters we were asking the questions;

-k are we,looking.at?Zr.and-"Ho4 do. we look?" In this chapter we ask
F

form look liker The "form" in this question is the same

"form".we haVe been discueSilig, all along. Itappearance is structure;

'structure is how fotm which has begn obser4ed'is described. We.will

examine the,meaninrof
4
this statement in some detail in later sectigns

'

of, this chapter. The discussion there builds on the .ideas of the pre-
y

vious two chapters, so a reviei.of the maiwpoints discussed there

will be useful in setting the eisge,for our discussianofstructure.

-7 ,

r -t
.

In Chapter Three we ialked.abaut some general characteristics

of complex systems. Although most *the discussion thereeals con-

cerned with the ktevelopaent .of a clear technicaj. vocabulary through 'the

,explication of a-get.of critical conceptSvwe mIski.tonched an some
tic

basic properties that may be obset2Ved incomplex'spitems. It is,

these properties that are cit interest here. If any one statement

about systems in general is fundamental, it is this: The prverties

of system are 4ue:boih to-,the_gopertiee of its parts and to the

eway.the_parts are related to one another. In order ,to undeistand the.
properties of h'syltem, then, it is necedsary to see not oily what

kind,of parts it is side of,'butalso how thoie parts. interact with

one another.
.

,,A processAUndamentil,ta the functioning of systems is the

interaction process, ithichve discussed iw,terms of constiaint,' There

isecnnatraintwhenever theredi interaction or'influence. Conatraint-

is-the flip side of independence. If a set of objects Are indepenient

0
e
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of one another, they do not interact With etch other. The degrees of

freedom of the set is equal to-the sum.of the degrees,of freedom of

did elements

one'another,'

thtis kiRd'of

,This redati

In the, Set. However, if the elements do interact with
/ .

they will not be independent. The degrees of,freedoe.in
,

1set will bt less than if the elements were independent.

On in degrees of freedom is constraint.

We also saw,in Chapter Three that if si system

properties different from the properties ofiits 'parrs

'emergent pfoperties the.paFts

. A set Of'independent.parts ihOws no

, amount of,thterdependence is directl

is to eve

we called-them

not be independent of one another.

emergent pr9perties. ,Sipe the)

related

to the amount Ofconstraini"(i.e the size, of the reductiod in.
. -

degrees >of freedost),. the' aiOtint '::r' OnstraiRt can Ve .in index

of "the likelihood thatthe syst,', as A whole will. show emergentirO-,

pertie$4, A lysteit with'Roco aint Jill system of.inde.Andeneuaiti.
. . .

Such a system shows no emit= entryiroperties. It woup,bejkettifi to

study the individual parts making, p such a "system" than .to s tudy the'
. . .

system'as a whole. . 4 I - 4 ,

F

,Thirdly, wee saw in Chapter Three how information it related

to the systems whicenust process it. Theratan only "be:linformation

1

in-sufficiently complex systems, for the "meaning" of ' infprmatioa is

"there" only because of the way the system irocesAritj and wesviewea

information processes as emergen processes, requiring lultiple levels:

in the system. ,The arbi pect of information "coiling the 6'

'meaning" -'is not a function of the Sig4al which is transmitiedin

exchanges; rather, it is a fuction of theclianges in the
/ . ,

signal is transforftd
tup-.

or down levels in the iriiOrma-
,,,

Tile exact nature of these caAngiA cam be explained onlY-

system as the

tion process;

if t)e set of

level in the
information

relationships between the Parts.of the4system,at 'each

stem is known, The diffichlty,of gaining this kind of

one ofthe-pointe brought Out in Chapter'Four.

-1 In Chapter Four we talked about the processes of observation

and description. Chapter Three -covered the. form of systems -- how they

-are put together and how they work -- andChaRter Four covered the' wiy-74

A
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in .which we may gain access/ to that for.. We began by -describing"
. c

destriptions. We'said .that all descriptions are' based on arbitrary'
distinctions, drawn by the person' describing the system: In orde3i to
draw distinctions we need some way of getting information about the
System. This i accomplithed through the proceis of obsetvation,
where the obtie ek-intett4ts with the system in such a way As to re-
duce the 'uncertain be-ilaS regarding some aspect of ths'ayitem.' All

. ,

observistions iequire.'int4tactibn with ,the System being .observed.
k Now,.iii,thepter Three we "ate spate of the)lisititions on

interadtions between two systems. An interaction involvei the'estab-
lishisent' of coveriatic,(between the two systems. This covasiation ima
take place at anelevel caison' to the", two 'systems. ,The? ab ity of '`

1 \

the observer to 'establish and :interyiei this' 4overioatian .in uch a,-

I
! way as to inswe'r the paitiCular question 'that was- asked will depend

;', ,,, . ..
,in'peit on the thoice of levels at whichich the System is "entered." J,

. ,...
This;

1 ...
; ? s is a complex Jamie, because Of the' relation between,descriptions-

atdifferent levels and the behavior pf the system at different
levels:- : ..' - ,t,

. . ..
1 . liere the logic of alterna tive ,dedcrii\tions betotses crucial.

:Very sivalieyi the logic of alternative descriptions It that, there may

be Many desciiptiOna, of 'die sate system, each of wh 'is:framed. from.
a different revel of analysis. We maY :speak about the whole system, or
its parts, or parts,;' and so on. The compliiiiidg issue. here ist

,

the emergence of, apparently new p roperties es we move up tohighet and-\, , .

hiehe'r levels of anaLysii....TIREki althbush a macrodeieription alit be
equivalent -to a MiCF escr pod tfon of the sass. system] this equivalence
might, not -be.apparene. Only if the sticrodescrikkon, is complete' in its
inclusion of all the ieliVsn aspects ,of the parts of. the\system will an

C

eq valence be:poatible: The equivalence stillon/y he seen if the micro-
delscription is properIytransfoimed, perhaps by statistical or pattern -)'

;

:SI

recogn$,tiokytechniques, into an alternate macrodescription. The choice
of aspects to be included or" xCauded is. of primary. importance, as

. . the actual transformition atethod that is adopted.
t

i

;.

ai
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, ..

i. '.. Ifetransfoription Is formlatedand applied to a micro-

.desoription, the results, may be compared to eyelid 4acrodescripfion

as,a test of the fitness of the transformation, /f a match Islip-

. rained, the transformation maytbe used as a model of the stem, in
. . Ir

pemes,of part - whole, relationships. This is alt6y of checking to see .

A. if theImportantand re4 levant.aspects'are being included,inan explama-

tit= of how the system warki.

The process of moviMg from Micto- to macrodescriptions was
,

,

covered in some depth because it was felt, to be. important for two -

reasons: Firse,,it provioles.a better conceptusi understanding. for ,

.
.

,

, i

the relatimashipbetwein a-Oicspiption.of a system and a description
,

4P.,

of the parts of which' the system is made:The relationship hete is
...'

6 .
1

one of structure tefuncon,wi_riwi strsucture it macro-concept-wish.

I., a iafrallel -mlcro-concept off(nction. This compafison will be used
, , . ,

a ain is later chapters. Secoud, the process icoVides a way of,w*k g

\ t ,
. ..

.

1;6yltems where doll :lie only availablefroi-iow levels, hile

l' ; .
(' io,'

4es. iOtions arVwdestred,est, high levels. It'suggests the; basic type

aFireafciitati9'that should be-used to make the mostjodt ofIthe date.

"Specifically,the transformation must be statistical, where the is
/

a lossNof a great dealof microscopic information (4hia is. useless
. 7 A S .,

at a macroscopic fivel'anyway) in exehange-for a gain in'hactostopic.
4,

1 .

information. ,rt is-thiS.selecttie loss of:detati'that alloys macro--

descriptions to7be'useful, The principle 4:f selective' loss di detail .1

,'is notonly important td4observers of systems; it is crucial also r
,

4- ..,.

.

) :

the'operation ofJthe system itself,, AS decision - caking units stri4 to
.,

coot ''the behavior:Mf the syitem:ando%monitoi their'eqctive

by 0%0 feedbick mechanisms Of:Iiii1444 types. *e'paralle

sul-

por-

,

,-: . :,* ,

,

taocte of the Concept both to the sys5ep and to its observer gges
.

, . .

S.,. l',.,
n

a 0

that the'approacp to the observation process ithich 'we/have outlined

1 ,

here is,a Coherent one' -- the observer is bOund by the same rules as

-the exstel'being observed.

r
1".

'
Ta

.

)

.

;
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As the ettle-fothis chapter implies, we are" ining,,:
a

structure as the appearance of fOrm. Stiucture is what the bservet

sees, while form is what the system A.. We can never have direct

sects& toform all knowledge of form is i6direct, achieved

through the process of Obsermtion.. Thus; structure --.the "image"

of the form built frpm information obtained through observation -- is

not the same as the folic.; it is the appearance of form. In this

chapter we explore the concept of structure as it Applies to the

general case of hierarchicaloystems. In thii explication we adopt-

a strategy that, starts with these concepts

o, (1) 0A basic definition o f structure as deviation from chaos
orrenammess; .

t

(2) A syptemsraiionale which says that emergent properties
-, of the syetem (indlud g structure) arehue to both4.1.11

phe'properties of th parts of which the system is made
and to the way those parts, are (elated to one another;

, 7. .' and , . .s

(3)--The'colkept of'ialternative descriptions, whidh suggests-

,
, .

. .

hpw;to go4frous description at a low level to one of
. -

&higher- level.

We coibine these basic concepit to' obtain amotipn(Of system structure
C

.

which is Solidly based,ii °the theory of observation. es ption in

,complex systems: The practice result of this logics rrocess is a set

of guideline& that suggeit oth what to look for it gher levels of

analysis and how, to ptocee only, loci -level data:

4tWe begin with a discus- of the definition of Structure as

dev Lion from 'chaos or randomn ss. After the basic notion has been

-I clarified, we move on toin analysis of structure frowthe perspective. ,

of complex, multi- leveled systems. In this section we examine the_ ,

relation between structure STrform, tying ip the ideas-central to the

processes of observttion and de-scription Constraint plays aceitral

-role in the logical analysis, andin the next section we,suggestthat
it also is central ikthe'aaalysis of complex systems. In this part' we.
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outline some procedures) that maybe used to approach any complex system

when the structute and organization are not kRown. A flowchart fora

general "analytic
.%

algorithm" is presented and it is argued that this

approach is'appropriate for the general case. ir

1

STRUiTURE

Wewill define structure as a deviation from randomfiesi or-
chaos. In order for the definition to be'useful, we need to know

%.

prec 1ely what, this "randotness" is, since it is the major term -in

e"the finitIOn. Specifically; we )4111 be interested in the nature of

random, or unstructured, systems. Thus, we begin pith randomness and
.

,. -,%random systems. 6:

40
. i

;Structure and Randomness

In a random or. unstructured system there is no pattern. ,)

The parts of the-system are indepeddipit of
,

one'another. 411(possible

states o thesylfem (and its parts) are equiprobable.. All of these'

411character stics are important. Important also are some other chaFac-

teristics implied by. raddoiness. ,Since the parts of the syitemare

, independent, there is no systematic covariation of the parts. When . ..

---4,-- one part is -known to, be in the system, theediscovery that other parts

are also in the system hewn° effect on our expectations of the,be-

havior of the first part. The other parts are not related to one

another:e they are not Constrained as a resultld being in tle system.
,

11

For all practical purposes, there is no,Uscernable difference between -.

a part in isolatidt
\

and,one in a random system: the part :in the ,

random system are free to behave in the same ways they would behave if

they were not in the system. The total variety of the random system

* is exactly he'sum.of the varieties of the parts:' Furthermore, a'random:

aye is beat described asra collction of independent parts at the

.of tAe parts.
, .

., --___,. % --4

.

e

.

Randomness is thus the absence of pattern, of order, -4:q

interdependence, of covariation, of constraint, of predictahility.
A' random sAtem is not in principle' different from, a Set of randomly

1
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arts. In fact,, ,many theorists would ,go as far as to say that

re no "raildom systems`:" Tay would say that what we have been

ing "random-systems" are not,reallVsystea? at all. According to
...4

s viewpoint, the concept of a "random system",is sel

tinguishes'a system f om a mere

-contradictory,

f(since the characteristic which dis
'%

aggregation is 'tile interdependence of the paris'of the system. In an '

,

aggregate, lauit,paits>re independent. ,This is a definitional problem.

Here we are using the lodser detinition6f systei, which allows the

existence of `"random systems."

A structured" system is one that is not random. In a struc-

tured system thereis pattern, regularity; Order, organization. The
7.

,parts are, at least to an extent, interdependent. Since:they are.-

interdependent, thert,iasdme covariation of the parts. Thus, a kiow-

ledge of the --fates of some.partsis likely to tell us something about

the states of other parts. The parts are thus constrained by.being

in tlitsystei -- inside the system some situations are more likely io

occur than o toil the system, while other situations which are seen
:3- I .

outside the

.

s t are not seen inside the,system.
.S

In.a structured system the.relationthips between the partsC
, 4

are not random.' Thus,.

certain ,than t*'" cast

ships will-All us one

'0
the existence of.same 4004tionships is more

#e of others. $ knowledge of.some relatidn-
;- ,

thing about the probability of the existence tpf

. 'other relationships some will

;less probable.-
. *

t ructured systems are

be more-probable, while others:will be

.46*,

.thui differentfrom,rstdbm or unstruc=

turea'ones' Let us examine the deeper relation between Atructure,and.
' .

Ikciate ofItheother concepts wee have been -working with.

/'
a

:-Esergont Piopertlei,ekevels,'and Structur,

- In randonkor unstructured sydtem, the parts are independent

of bne,stother. What relationships there ,are between parts, are also .

FatKlima -- the relationships are independent of one another.' There are

thus two " :levels" of" randomness. At the first, the parts are indepen-

denyof one another. There is no interaction among any of the parts.

6 1
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At the second level, there interactions among the parts, but

these relationships are independent of one another. Many times .

1

there will be a mixture of the two types of randomness. Fax example,

in asocial System that includes, say, the people in a waiting roam,
. N

most of the people will not interact with any of the others. What
.

interactioni,there are are essentially random '-- they are not coordi-

nated in any special way. Throughout the reseof the discussion, whenq .

we_say ",random system," we will mean.random at the second level.

If relationships 4re viewed as constraints, thillPmeanS that
4

the constraints in a randolksystem are tandem also., There i no rela-

tion be en any one constraint and any of the hers.

De said earlier that emergent' properties have their roots-in-

the relationships among the parts. "Because of the-relationships among

thparxi," we said, "the\System behivei in ways'the individual parts
.

do not or could not." We also said that the notion of emergent pro-

perties is very closely ti to the notion of leveli, which we defined

in terms of emergent proper ies: a set of interacting parts is said

to be at a higher level than the individual parts if the set displays

emergent properties as a-resuli of the interaction.

Two notions stem from thi

t
discussion. First, in a random .

ameor' unstructured system there are n , rgeat properties. This, of

course, is because of the independence of the Parts and the absence/

of relatiosihips be5ween them. Second, in a random or unstructured,

system, there is nenew level above the level of the parts. Inii-other ';`'''

words, the level of the system is the same as the level-of-
/

the parts.
..

The properties of- random pr unstructured. systems are thus the same as

the properties of the parts,of those systems, which behave iimply'as

their parts behave. In other words, the behavior of random systems is

the same as-the behavior of their parts --.no more and no less.

1 .

.

.

\:' .. .

Structure'and Form 1,
.

- -- A We said earliei'in this chapter that "structure is the

appearance of form";
/
that "structure il what the observer sees" and

Inform is what the tree is." This section expands on theseiboints.
i

4
)
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The form of the system is Ohat the system is. The form pre-
?

cedes all, the distinctions that could be drawA because it incorpOrates

(is) all the differences thatcan-be used as bases for distinctions.

The form defines the system. The form is the system ...
. ,

If the system is formless, no distinctions can be drawn.

because there are no differences. Nothing can be said about a- form-

less system, other than that it is formless. The more differences

there.are in the form, the more distinctions can be drawn, and the'

more that can be said about the system.

Now, the 'bbserver does not have direct access to for The

best ,the observer can do is "sketch in" the form, by interacting with

the system in such a way as to discovi4 some of the differences )in the

form: In this way, it 1tidiscovered that systems have boundari s ,or

are hollow, or are red, and so on.

If the observer is uncertain as to the 'aspects of, foiti; that
fo

are likely to be seen,,he is likely,to make a great number of °beer-

vations in thglhopes that it will be poseibi0o.idiscover the important,

differences in the form .by looking indirectly the data points'.

provided by the observations. If the data points are ,all'the same,

no differences areobserved and very little can hesaid. There is no

variety in the form.

On the other hand, if the data points are all different, the

Only description that is faithful is one that reports all the differences.

Here the best description ofrthe system is-a description of its parts.

This situation is the random system --.chaos. There is to constraint.

They two types of systems -- organized simplicity (no

ty) and thaottc complexity (no constraint) were discussed earlier.

4 ar n t interested. in these types of 'systems, but rather in the

third class -- organized complexity -- where there is variety and -

constraint.

In,this type.of syste#m there,will be some systematic varia-

tion oi wren instead of absolute chaos in terms of differences in
to form (and hopefully the obse0ations), so' that some sets of parts

are 4fferent from other ,sets of parts or some sets of relation hips
are different 1.p., some way from other.sets of relationships. It i

0
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possible to base distinctions on these higher-level differences 'in the

system. Here the best description of the-system ig

merely distinguishie,each part fromall the others.-

be one which distin44guishes different parts, but not

4hus, the'description. the system will be ,simpler

ptions of all the parts in the system.
. . A .

What is being described.here ilythe strpcture of the system.

Th term "str uctu2(e" to the 4pearance.of
o'
form -- the differ;

rgA'.

not one which

ItattAte, it will

similar one's.

'then the combined

ences reported by the observer ifs thedata points In a sense, struc-

turiathe form as reconstructed or modelled by to observer.
O

a

Descriptions, and Constraints
-

A 'The concepts of properties; descriptiOns, and constraint ire

all intiOitely'related. "Properties"_are seen in descripiions'of

constrained. systems. How does this

J / Descriptions, we saw earlier, involve the drs#ing of dis-

, tinctionis In order for ddistidttion to/be drawn, anOtservable dif-

ference must be'perteived by an observer. Properties erelsimply a

type of distinction drawn on the basis of some differences stn the form

of the aystei being described. For example, if we speak of a system"s,

weight or age or length, we are distinguishing between the particular

system Observed and all systems having different wei 'hts, lengthe, or
6

ages. These.dihtinctini involve the establi nt of relations

between'the system being observed and other'sy terns. we speak of

the shape of a system, or talk about the'relation of one side of the

,cl

Asystem to th other side, weare distinguishing bet een differenyarts

of the Syst ,1rHere we are concerned with the esta 4shment of rela-

tions betwee the parts of the systei. These relationships, like all
c , . /

relitionshi , depends on some kind of constraint. If there were no`

constraints, differences could not be observed, and distinctions could

not be drawn. The system. would have no observable properties.
..0-

The more differences we can observe, the-more we can infer
about constraints operating he system, and the more properties we
can describedf'the system.

emore random a system is, )he less

r.

O

4

*-

7-;

'
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constrained'it will be, and the less differences its form'will have.

This means that we'cannmake fewerdisiinctions; and describe fewer

--- proper -ties. We would say that the system "has" few observable

properties7771

4-syatpi-may'hij4omposed of a set of unconstrained or ran-,

z Nik dourly organized parts. Even if .these parts are themselves highly

struct ed,(i.e., if they show many clear properties), such arandom

syst will "show" no properties. ot seen in the parts of hich it

is made. The best that can ,ke done to describe the "p perties" of

the system in thiscase.is to\describe the properties ()its parts.

'The only constraint operatingin the system is in the individual parts.

If there is some -constraint in the way the parts are organ-

izedi however, thid:willleadto differences which can be observed. . r,

and described as "propertieti.". nakei,c'for example, have two ends.

The ends are different from the middle, 4 one end is different

from the other. These differences are due constraints in the way

the Icella of the snake are organized: "'If these constraints we e not

83

allowed to operate, the ends wduld be the same and it would not make

.12 sense to speak of the ."head" or the' "tail." .If the ends were not

,...ta._,I,diifereitifrom theimiddle, the snake would be like a hoop, with no

epds of any.kind. It is.the constraint that allows differences which -
,.

_determine the properties of the system.
.

.

Eiergeni properties, like other properties, are bailed on

differences/constraints. When the parts of a system join one another',
, \

in the relationships implied by membership in.the system, they'are

constrained in some way. It is .additional constraint that allows _

11011r
. s

emergent properties to "be." more organized are he relationships 4\

:among the parts,..i.e., the more related/constrained are the relation -

shipa,throughbutthe system, the more the system as a whole y111 show
i

pdper4es 'as a unit. On the other hand, if the relationships among
. , I

the parts are unconstrained ,4.- independent of. one another -- there may

be no differencei to be observed and thus no emergent properties. The
,,..

system "behaves" as a collection of randomly organized parts.
..

; 4i1p, 'S. N -_,
J

*5

.> , ,--4',:,?.t; ,, ' c

4.4.4( , , ,.4.
... W.: ..., , 144 ..
,.,. '.1 .' 4-::::: "..l. Ili' ", ',t

".)
6#4 ,

'',,.. }
;
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Even if the parts are constrained by their relationships witn
_,...S

other parts, there may be no constraint in the overall set of rela-

tionshipt. This situation is illustrated by a. bucket of'sand. While

each grain is physically constrained by its neighbors, there,is'nd
, . .

+overall order to the set of these physical-constraints. Because there
v.

.
,

are no constraints on the set of constraints, there are no differences ,

over the tet and, therefore, the sand as a whole shove no emergent_
L

pr4erties. ' .-
.410

Sources of Constraint: Structure vs. Control Systems

.There seem to be two soUrces."Of constraint on the eleizents

21ftcomplex-tystems., The first is simple -- Oie physical character-
.

ittics of the elements directly limit their interactive capabilities.

TO''unaerstand'how an element is bound by this type of constraint it is

necessary only to evimine the ement itself. This is becalse thedo

constraint is dne to 'the form of 'the element, And'not to other-

'considerations.
.,

The second source of constraint on the elements is more,

complex:- -BeCause of-the way the parts interact the system may have

some emergent characteristics that modify the behavior of the parts in -1
,

the system. Thitamounts
/
to what Pattee

v

(1973) called a "feedback loop
. ,/

./ between levels." Pattee argues that.this,kind of constraint is what
....._ .,

allows the system to control its min behavior. Iaiorder to understand

'how the tyste7Constrainsthe elements ofiihich it ,is Mad it is n es- ...,-
. ,

sary to examine the whole system. This is because the constriint ..1.
.1r

due to the torMof the system, rather thin the form -of the arts.

4

0

In the systemt where only the first kind of constraint 'is '

present, teTelis a hierarchy of organization, where the systeni is made

of parts which are made of smaller par , Ortso on: These hierarchies'
_.--

are also charapterized by 'hierarchies. of numbers, forcee; and time
. r

k scales; so that larger numbersweaker forces, and time scales
. : _

,

J ,, are associtated,withhieler ledit in the system (Pattee, 1973i_pp.-75-.

'77). These systems Can be described by dynamic'equationt written for 1

one level of the,system at a time. In these equatioptit possible
t.

-...

!:/.1)--4 1., A

,...) v , . . - ,.

/ II
4 ''': ta.,.. 4

r

?

a
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to make the simplifying approxiMation that there is a "typical particle"

which is'charadteristic or representative of the collection at that level.

The behavior of gaseous systems is so descid.bed with the model of per-

fectly elpticmolecules, where the individual details ate averaged out

and dynamics of higher levels are constant.

When the upper levels exert partial constraints on the details

of behavior of lower levels, however, the case is entirely different.

In this situation, there will be a hierarchy of controls, instead of

a simple hierarchy of structures. Pattee says that:

In a control hierarchi, the upper level exerts a
specific, dynamic constraint on the details of the
motion at lower level, so that the fast dynamics
of the lower level cannot simply be Averaged out.
The collection of subunits that forms the upper
level in a structural hierarchy now'also.acts as
a constraint on, the motions of selected indivi-
dual subunits. This amounts to a feedback path
between levels. Therefore, the physical behavior
of a control hierarchy must take into account at
least two levels at a time and what is worse,
the one-particle approximation fails because the
constrained subunits areitypical. (Pattee, 1973,
p. 77)

The constraint on the lower levels will be exerted by the higher leyels,

rather than only by other lower-level phenomena. One effect of this

kind of constraint will be that the relationships among tiA lower-

level parts will be organized into higher-level patterns. The relation-

ships themselves will be organized in ways that would only be possible

with direction from higher levels. In order to see how the parts

behave it will be necessary to examine thei all in the context of the

overall system because there are no "typical particles" in this kind of

system. This 'apalysis requires an examination of two levels at a time.

Summary,

Before going into a description of general research approaches

to complex systems, it will be useful to summarize the important points

,concerning constraint which have been brought,, out in the aiscussion'of

this chapter.
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(1) Structuring in systems results from constiained yariet.
Thus, random systems are unconstrained.

(2) Properties may be described when/differences resulting

-/ from constraints are observed.

.

(3) Emergent properties are dependent on organizational
constraints, which operate on the level of relation-
ships among parts.

(4)' Total constraint results in static` structures or organ-
ized simplicity. Zero constraint results in chaotic
aggregates. Neither of these allow for interesting
emergent properties.

(5) Constraint -exerted on low levels by low levels allows
the development of local structures but not syStem
level dynamics.

(6). Constraint exerted on low levels by higher Avels allows
tht deyelopment of compleX 'forms of organization where
hierarchical coitrol processes are seen. .This kind of
constraint will be evidenced by the organization of
relationships between parts into higher-level patterns
which can only be examined in the context of the entire
set of relationships.

STRATEGIES FOR RESEARCH -.

The goal of much research in the area dft5omplex systems is

to gain an understanding of the characteristic properties of the

system together with an explanation of how they came.tto be manifested

by the system. In the process of achieving such an understandiRg, a

number of questions will have to be answered. One of the fiist of

these will be: Are the observed properties associated with the system

as a whole or with the individual parts of which the system is made?

If the answer is not immediately obvious, due to the fact-that the

particular propertiesobserYed could only exist in a-system of several'

parts, the question can be answered empirically, by studying individually

the parts after they have been isolated from the rest the system.

If the propertiei are'no longer observed, they are associated with the

system. -

eb.
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In many cases, however, it may not be clear what the "proper-

ties" of the system are. This could be due'ta the fact that the par-

ticular system being observed was never, examined as a whole intact

system before. It may be due to the fact that techniques for measure-

ment or observation have not been developed for the particular type

of system being studied. It may be due to the fact that virtually

nothing is known about the system at all, other, than that it contaitt

some particular set of member elements.

If the last it the case, it will be necessary to approach the

system from a most basic perspective. This approach might be one that _

sags to get the best possible information about the system and use as r

much of this information as can be utilized in formulating a desprip-.

tion of the system.
4

. We said in Chapter Four that, while it is possible to make

high-level statement's about systems when only low-level data are'

available, it will probably not be possible to move in the other

direction. Because of this limitation, we will deal here only with

cases where low -level data from sets of elements which we wish-to

study as systems are available.

The kind of information that will be-most useful is informa-

tion descriptive of the parts of the system and of the relationships

among those parts. Given this kind of data in a situation where we

don't know anything about the system as a whole, the first question

we would' ask is, "How constrained'is the system?" Here we would be

asking how interdependent are the parts and their relationships. If

the system is a random one; there is to need to study it as a system.

It will be better to study it as a collection of septrate parts. If

theitOtem is constrained, however, we will want to know more about the

way it is.organized. How many levels are there? What kinds of con-

, straint are operating on the lowest -level parts? What emergent proper-

ties can be identified? , \ghat are'the dynamics of the system? What
.

'kinds of control mechanisms doesit contain?

- In the next section we present a flow chart for a "general

algorithm to study structuring in complex systems" (GASSICS). The
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process described there will result in a description of the system, in

terms of hierarchical levels, with a specification of the organization

of parts at each level. This!is the first step toward gaining an

understanding of the syqem. Although working through the process will

give a description of how the system is organized hierarchically,'it

will not explain the dynamic behavior of the system. In order to do

this, it will. be necessary to study the system as it interacts with its

environment across many periods of time.

A GENERAL ALGORITHM FOR STUDYING STRUCTNEIN COMPLEX SY1TEMS

We present here'a general research strategy for studying

structuring in complex Syitems. Because the strategy can be outlined
-

into an explicit set of steps, we call it an "algorithm." Compared to

many "apprbaches" or "methods," this one is almost mectiCical to carry.

oue. We call the procedure GASSICS -- General Algorithm for Studying

Structure in Complex Systems. .

The GASSICS procedure was formulated to take advantage of

the conceptualization we have presented in this Fart. All the basic

ideas aboutform, constraint, structure, the lirocesses of observation
0

and description, and the logic of alternative descriptions,are ilacor-
:

porated into the procedure.
. .o

.

a In the last section we outlined some general reseaFch ques-

tions we would ask when approaching an unknown complex system. 16
fii's questions centered on the form of the system, or rather the

appea ance of the form to an observer --,,- structured Since we,viiled.

struc rein terms of constraint, constraint is a core Concegt in thg

GASSIC pro6dure. The final result of a complete application of:thop,

procedu e is a description of the system in terms of hierlirchi011:
. -

levels, ith a specification of the organization of parts at each leycl.
0

The procedure begins with a low-level description of the

parts of t e system. In general tends, these parts.youlU be,at'dle

highest le 1 at which units are both readily identifiAle and:aL."6es.--

sible for o ervation. The procedure itself is organized as i recur--

sive loop. Ch cycle through the loop mqves up one.level-of analysis,

100 q

II
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so "t the result of one cycle is a description of units one level

hiOier/than the original parts. These units are used as parts in the

n 'it 'cycle through the loop. There are two points in each loop where

he procedure may terminate. One of.these will happen if, at some

/ level, the system is found to be random or unconstrained. .The other

/ will pappen where the highest level -- that of the whole system -- is

reached.'Let /us examine the procedure more closely.

ty

The Loop

We begin with a low-level description of,the parts of the

system. This description must include data about the relationships

between the.parts,.in terms that can be rusted to -constraint. When

two parts are relhted, one or both' is constrained by the relationship.

Ihe-data, then, wil), be a description of eachrela tionship 'between
1

parts. (The data are described more fully in the next chapter.) The
.1 6

collection of this data is the first step in the loop.

The second step in the loop is to see if the set of relation-

ships among the parts is constrained or non-randot. If it is, there is

evidence of structuring, in terms of higher-level organization. This

implies either that the system as awho4 may be broken down into

differentiated parts or thhtthe next'level above the lever of the parts

is the level of the whole system.

The third step, of course,'is to identify the differentiated
4

parts, if there are any.

When the parts have been found, we begin another loop by

obtaining information about relationships between the'new, second-leyel

pirts. The relationships.at this level are not likely to "look" the

same as the\o-ginal \relatiOnships. This would be expected

because the units we are dealing with are not the same -- in fact, they

are made\7 of several hmaller units. :Ibis problem is discussed in more

detail in ,Chapter Six.

At any rate, this new set of relationships would'be examined

for constraint, just as the earlier set was. The rest"of the loop is ,

completed in an analogous manner each time, the only difference being

-
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the level of analysis each time through the cycle.

The GASSICS procedure is diag4imed in flowchart form

4 Fignre,l. The three main steps in the procedure are shown by the

-numbered parts of the diagram. The box at the top is the data co lec-

'tion step; the diamond is the constraint or structure test; and the
.

trapezoid is the step in which differentiated parts are identified, ,

.
,

The first three chapters of the next Part correspond to thL

three steps in the GASSICS loop"; the fourth presents aseneral discus-

sion of procedure.

.

'1

1

- \

AD.
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Figure 1

GASSICS: A GENERAL ALGORITHM FOR
STUDYING STRUCTURING IN COMPLEX SYSTEMS

START

OBTAIN INFORMATION
ABOUT RELATIONSHIPS
.BETWEEN THE PARTS

O

Randoi.

4
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System is not structured
and should be studied as
a collection of independent
units- ,

-SEARCH FOR .

DIFFERENTIATED.
SUB-GROUPS IN

POPULATION

1

l
No differentiated groups

The next level above the
level of the parts examined ,

in (l.) is the level" of the

whole system

L.

.t
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PART THREE

OP ERAT TONAL I ZAT IONS

In the chapters of Part Two we discussed the conceptual basis
.

for a coherent approach to the study of complex systems. We started.

with an
,

analysis of the form of, systems and moved on to an examination

of the processes of observationand description. From there we went

on to discuss- structuring in complex systems -- what would we find,

given an understanding of what we were looking at and how ,the "looking"

process works. Finally, we outlined GASSICS, a general procedure to .

When approaching unknown systems.

The chapters of Part Three present an operationalization

cycle of the GASSICS procedure for use, in large-scale systems.

The steps in a cycle of the GASSICS loop are:

use

one

(3)

Obtain information on the relationships between the parts
of the system.

-Examine thoseidata to
are organized in some
relationships between
tured or constrained

determine whether or not the parts
structured manner. If the set of-
the parts is found to be struc-

... examine the set of parts pr
than the original parts.

units one level higher

If the total set of parts breaks down into several higher level

units, go back to t he firstItep, using the units as parts.

Chapter Six describes measurement probAms in general and

give, specific examples of a technique designed to collect the appro-

priate data for the study Of large social systems. In Chapter Ssven

we develop the statistical tools needed to'perform'the test of struc-

.
ture used in the second step of the GASSIOS loop. Chapter Eight pre-

.

sents an algorithm that identifies units one level above the level,of

the parts,. together with a description of a computerized implementation

92

4.
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of the algorithm. Chapter Nine consolidates the earlier chapters of

this Part and discusses this operationalization of the GASSICS loop

in general terms. In this overview, we see how the analytic procedure

fits into the overall approach to complex systemi, as well as how it

relates tolother Mithdds of analysis.

1 05

II

I
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CHAPTER SIX

STEP ONE OF GASSICS:' DATA COLLECTION

INTRODUCTION

In this chapter we will discpss the first step of the

GASSICS procedure. As we saw at the end of Chapter Five, the proce-

dure is a loop, with one cycle for each level in the system abel;, the

level of the parts. We begin with information about the relationships

between the parts and move up levels, one at a time until we come to

. the highest level in the system.

Assumptions

'There are some assumptions being made which should be dis-

cussed at this point. First, we only move up levels. The reason we

go up instead of down is, of course, the asymmetrical relation between

alternate descriptions at different levels. This issuewas discussed

in Chapter Fout. 0

The second assumption we snake is that levels are discrete,

and can be taken one at d time. If this were not the case; we would

not be able to have a discrete-, repetitive loop as we do in the GASSIC)

procedure. lie would not be able to have any single description without'

having every description -- there would only be one description -- with

none of the "alternate but equivalent" business we spent so much, time

on in Chapter Four. i

How do we justify the second assumption? There are two lines

of thought we can follow. The ktrseis based on the nature of descrip-

tions and the second.is more empirical. Let us start with the logiCal

argument first. The argument will be that the very nature of descrip-

tions(demands a discrete organilation into levels. It goes like this:

descriptions are based on distinctions, which are made 'theft differences

are noted. If thereis a'difference perceived 'in the'form, one part

can be distinguished from the other. Distinctions cannot be made when

differences cannot be-reliably noted. Thus, distinctions. are discrete.

,0
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Since descriptiosare based an distinctions, they too must be

6discrete.
. .

What is the difference, in terms of distinctions, between .

two alternate descriptions at different levels?' Basically this --

different distinction's are being made. Recall that we defined the

concept of levels as a concept of deicription. We saida set of

interacting parts would be at a higher level if we observed properties

in the interacting set that we could not Observe in the set- of parts

-taken one at a time. We called these properties emergent properties

and said they were ,due to the interaction of the parts.

At higher levels, then, itTe will:be describing emergent pro-
.

pertiesior characteristics of the system, rather_than simply properties

Of thparte. We discussed properties in teris:af, distinctions based
, -

on differences in the form. These differences were equated with con-

straints in the system,. At higher levels, there ate'new properties --

new distinctions, based on new differences.' '':ditferenOes result

from constraints due to the way the parts ,in

This is all fundamentally discreda. A ticin at one

level will take account of one set of distinctioUC.:Aile. a descrip-
-

-ion at a higher level will -take account" f a differemt 441kof dis-

. tinctions, based on the only thing that is differeal:bet4e.in ,a

/".
collection of isolated parts and,a system made of interacting parts

--,- the interactions.
-.

Thus, we have discrete levels of deScription. As we include

tare and more global interactions -- that, is, interactions covering or

constraining largei and larger segments of the system --, we move up to

higher and higher levels.

The empirical argument for discrete levels is based on the

idea of nearilecomposa ity, 4a concep described by'SiMon (1973,

pp. 9 -10). If -we mud e the kinds of interactions binding the parts

of.a physical system, we see that there are sharp changes in the

strengths of these bonds as we move up or down levels. For example,

protons and neutrons interaCt.primarily through what is called the

"strong fOice." At this leNiel, -bond's are on the order of 140 million

') .4
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electron volts each. One level higher We-.have molecules, where the4. a ,

ectro-magnetic forces are on the order of five to six electron volts.
,.,

..-

. 4> t this level the, --strong forces do not opexate.The bonds responsible /

for the tertiary structure of large macromolecules are on the o der of
.

i one-half of an electron volt. -"It is precisely this Sharp gradation :.

. . ,

in bond Strengths,at successive levels that causes the system to -'

.00

appear hierarchic and to behave do" (Pattee, 1973, p. 9).
L

Not only are there different 4indsof bonds at different
g
levels, but there-are also different behavioral charaet istics. Per-

/haps most fundamental hert is what Simon calls the "associatedfrequen7

Cies" of each level.

Motions of the System_determined-by the high frequency
modes will control the internal interactions of
the componentsof the lower level dubsystems in.the
hierarchy, but will not.be involved in the inter-,
`actions among those subsystems. Moreoveri, thise
motions will 'be so rapid that thccorresponding
'subsystems will appear always to be in-equilibrium ,

and of their internaldegrees_of freedom will
( ' van Lastheirfrelations with `each other, the

sev unsystems,will behave like rigid bodies,
so t peak. -

' G
Themdle band of frequencies, which remains after
we have .eliminated the very high ands, rs:low fre-
.quenaes, will determide thebierva dynamics ,

of the system under study -- the d cs of4 I
. interaction of v4e major subsystem (Simon,' 1973

p. 10)',,

Because there tare such, sharp breaks as we go up or,down levels,
a

Simon calls these4 systems "nearly!decomposable,"-meading that for almost

all practical purposes the system can be "decomposed" into disciete

levels. Thus, the second ass4ption is supported, try .the. empirical'

evidenCe, as well as logical arguments.
.

Simon's presentation.of near decomposability was discussed

in terms of physical syStems -- electrons, atoms, and soon. The same

general concept seems to apply"to social systems as,well.' For example,...

the xelation between i-husband anil wife is usually much stronger than

7,
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relationships between differedt families in a neighborhood. It is also

a fundamentally different kind af'relationship. Going up another level,

the relailtiehipt.between families in a coimunity are different from

therelationshigbetweencommunities, cities, states; or countries.

The same kind of hierardhy can be seen in larie rganizations, as we

4ove from work teams to departments 0 divisions, and so on. The impli=

cations of the second assumption are discussed in the next section.
/.

s

' Imp]: tions of the Assumption of Discrete Levels

The assumption, that levels are discrete suggests.that we can

go up one level at a time. The reasons behind the discrete nature sug-

gest the kinds of differences we should expect to see as we go up levels.

Both the logical -and emOiricaargUsents discussed above imply that the

relations,between the parts at one level will be-different from the

relations between'the parts at different levels. One aspect, however,

will be the same -- all relationships inply_some kind of covariation

between the 'parts. All relationships constrain one orboth of the

parts, no matter what level. the parts are at.,

RELATIONSHIPS

What, more can we say about relationships atthis point? First;

relationships will "look different" at different levels. *They will re-

quire different observational techniques to be used. Although it is .

possible that a relationship between units -at one level will be'dqui-

valent to (or reducible to) a set of relationships_ between the parts of

those units at a lower level, there is no reason to expect this to be

true in all cases.; or even in a majority of cases.

Second, the exact nature of the relationships that may be-

entered by a unit at some level will be mostly a function of the unit

at-that level. In other words, it will be difficult to determine the

nature of relationships at some level without some information about/

how ale units behave, even if information about the. parts of those

units at lower levels available: The lower level information may be

very useful, but it might not be sufficient in all cases. It will depend

on the system.

109
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Third, there'are Some general characteristic's that can be

used to describe-relationships at'all levels. These general charac-

.teristics are described in the next section.

General Characteristics of Relationships

1. Strength

Probably the most basic aspect of the relationship is its

strength. How much constraint is there because of the relationship?

To what extent are the behaviors of the involved elements influenced?

2. Symgtetry

Are one or both of the involved elements influenced? If both

are influenced equally, the relationship would be symmetrical. 'In

symmetrical relationships,, there is no concept -of direction -- the

elements are mutually inglueReed. If only one element is influenced;

the relationship jould be asymmetrical, and it would make sense to

speaklpf the direction pf the relationship,- in terms of which element ,

influences the other.

;3. Transitivity ,

Does'the influence of one relationship carry over to the

other relationships the elements may be involved in? In other words,

if A is related to B and B.is related to C, does it follow that A must

covary with .(be related to) C? If this is the case,'-the relationship
v

would be transitive. Otherwise, it would be intransitive.,

Matter-energy vs. Information Relationships'

In Chapter Three we discuped the differences between matter-
.

energy and information relationih104. One aspect of the difference we

did not discuss was this: An systems where the interactions are all

matterenergy, there will usually be only one type of relatiOnship be-
,

tween the parts at any one 4vel. For example, in physical systems,

at the level of subatomic interaction between the protons and neutrons
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of an atom, only the strong force has any effect. The electromagnetic

forces, weak forces, and gravitational forces have no effect at this

level. At the next.level up, where we are speaking of bonds between

atoms in molecular structures, the only forces that are important are

electromagnetic. Thus, at any. level only one kind of interaction may

be observed between parts.

In information systems, however, thin may not OL the case.

It is possible,for there to be many different 'types of relationships

concurrently between the parts atsome level: In fact, it is possible

for there to be several distinctly different systems, all composed of

one get of parts. In this "overlapping" system situation, the parts

at some levels may have several "modet",of behavior, so that if these

modes are examined separately, each will appear as a distinct, complete

systems It'seems likely that these multiple modes are more accurately

described as different Aspects of the microscopic characteristics of

the low-level parts. Some of these aspects may be important at the

low leveli,of the parts, but irrelevant to the system as a whole. The

resolution of this issue may be primarily an empirical task, but it

surely demands more in the way of logical clarification, too. At the

present time, it.seems advisable to isolate these,modes duing analysis,

at least when using this first operationalization of the GASSICS

procedure.

The discussion so far in this chapter has been conceptual.

In the next sections we turn first to some issues related to opera-

tionalization in general, and second:to a,specific application.

OPE1ATIONALIZATION IN GENERAL

The issues we have been discussing are conceptual:. Iii order

to use them we have to translate them into operational procedures. In

other words, we need to build a model of the system,q75the form of

data. The4data will be the operational counterparts of the conceptual

terms. In order to preserve the conceptual clarity we have been trying

to maintain, we obserVe the distinction between.the conceptual and
operational components. To underline this distinFtion, we introduce Of

1. 1

4
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new terms to refer to the operational aspects. Sometimes the opera-

, tionalizing procedures will lead to situatidns where new, additional

distinctions need to be made, due to the relation between the concep-

tual and operational systems. Both this new terminology anethe

distinctions associated with it are presented in this setion.

We start with the basics. Where we had the concept of the

system, we use the operational network. Where the system was made of

parts and relationships between them, the network is a set of nodes

with links between them.

The network is not the system.' It is the image or)sodel we

use of the system, in the form of data. Similarly, the nodes are not

the parts of the system; rather, they Are artificial constructs that

represent or stand for the real parts. Finally, links are not rela-

tionships. Instead; a link between a pair of nodes indicates,,that

there is a relationship between the corresponding pair of parts of the

system.

Symmetry /Reciprocity

Just as we use nodes and links instead of parts and relation-
(

ships, we also differentiate between the theoretical concept of symmetry

and its operational counterpart, reciprocity. In this case the dis-:

tinction is most important when measurement techniques may be uarealiable.

For example, if a relationship is concyptualized as.symmetrical, if A

is related to-B, B must also be related to A. This is analogous to the

case when both parts are equally constrained by the relationship. Here
if"

we would expect a parallel symmetry in the data.

If, on the other hand, the constraint is not equal, so that

one node is onatrained while the other is not, we might find that A-

is related t B t t B is not related to'A. Here we could replace "is

related,to" th "is constrained by" and the,meaning is obvious. In

this case, where the relationship is directed,or asymmetrical, we

would expect a Parallel asymmetry in the data.

In keeping with the distinction between erational and con-

ceptual terms, we speak of reciprocity instead of symmetry. Thus, if

a

1.>
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node A is linked to node B and node B is linked tJ;pnode A, the A-to-B

link is reciprocated. (Perhaps it is more appropriate to.say "A- with -B"

.instead.) If A: is linked to B but B is not linked to A, the A-to-B
t_

link is unreciprocated..

clearly,,we would expect reciprocated links for symmetrical,

relationships, and unreciprocated.links for asymmetrical relationships.

If our measurement techniques are reliable, this is what we will get.

Many times, though, this does not happen. Why?

First, as pointed out, the measurement techniques might

not be rettUble. Some. relationships will be missed, leading to missing

links and thus unrecivocated links:-Other relationships will be

wrongly identified, again leading to unreciprocated links. But this

situation might not "look" any different from the second problem situ-

ation -- we may-have misconceptualized the, relationship as symmetrical

in the first place. Maybe the relationship was really asymmetrical.'

This would also lead to unreciprocated links. Here, unreliable

measurement would lead to some casts of reciprocation; as well as same

false unreciproted links. If the relationship was Strictly asymme-

trical, so that A r B implies B not-r A, all reciprocated links would

be evidence of measurement error. To make matters worse, the rela-

tionship may be correctly conceptualized as symmetrical, but the

operationalization may "elicie.or get at a different, asymmetrical
,

relationship. This would lead to unexpected unreciprocated links.

Can this mess be straightened ou Only partly. In general,

if our conceptualization is correct, our perationalization matched to

it, and our measurement technique is reliable; the data obtained will

. fit the conceptual model. It is when the data do not fittheexpected

model that trouble should be expected. Clearly, the weakest points

should be examined first and subjected to cross-validation, if that is

possible.

If the measur t technique is thought to be the source of

the error, and it is no possible'to correct it and repeat the-measure-

ment, there arse twoL courses of action. First, the "conservative" one:

in the .case of symmetrical relationships, unreciprocated links .4re
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A dropped. In the case of trictly'asymmetrical relationshipS, recipro-

cated links are dropped. e "liberal" approach would add tlye,"missing

halves" of unreciprocated 'inks in he case of symmetrical te tionships.

inthe case of strictly asysmetrical relationships, there is no "libeial"

approach. Also in the case of relationships that are neither strictly

a0mmetrical nor strictly symmetrical, there is no WaY of distinguishing.

pr6kableierrors from correct data, and no action can betaken.
A

--Strengths

Because the relationships are not dichotomous in the extent

to which they constrain nodes, we can be more accurate when speaking of

relationships if we give some idea how much constraint there is, rather

than if we simply say there is or is not a relationship. This extra

informationwill turn 'out to be very useful in later stages%f analysis.

Foi the pur%poses of those later stages, it wibenecessary

to have an indicator that varies roughly as a ratio of,the strength of

relhtionship. Because there is little ambiguity here, we call this

indicator the "strength-6f the link." The requirement's:A ratio - ,level

scaling implies that:

(1) A link from node A to node B would hiive a strength of
zerwif part A is not related to part B in the system.

(2) If the relationship fromB to C constrains the in-
clu4ed parts the dame amount as the relationship from
A'tti B, the strengths of the B7C and A-B links would
be equal.

, (3) If the relationship from B to C constrains the included
parts twice as much as the relationship from A to B,

the strength of the B- C-link would bd twice that of the
A-B link:

Transitivity .4

It'is not at all obvious that all relationships of the type

we have been describing are transitive. -"kowever,, there may be some'

situations in which the assumption of transitivity is made. In these

cases, it will be'possible to say something about links connecting

N
I '
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nodes which are indirectly linked. For example, if A is linked to both

B and C, where the relation is transitive, there Should also be a link

from B to C. The strength of the B-C link will be a function of not

only the extent to which the relationship is .transitive'(this may

vary) but also the symmetry of the relationship.

The transitivity. issue is related to a geometric assumption

often made with distance models of relational data. Many of these

methods, especially in multidimensional scaling, are metrie,methods.

The strongest assumption in these methods is also the one that gives

them their power. This assumption is often called the "triangle

inequality." It states that the distances between any three points'

must obey the law that says, "In any triangle, thewlength of any one

aide cannot be longer than the sum of the lengths of the other two

sides." If network data are represented In such a way that dtrong

relationshipi are replaced by short distances, the triangle inequality

will say that whenever one part is related.to two others, those two

other parts must be related to each other. In essence, this is the

sari:430n of transitivity.

If the relationship is only partially transitive, or if the

relationship is asymmetrical, so that links are diiected, the situation 4,

becomes very confusing indeed. As was mentioned earlier, the whole 4

issue of transitivity is sticky, .and needs much in the way of theore-

tical clarifying work. (There are some points at which transitivity

would be salient in the next chapters. Because the pblem has not yet

been satisfactorily solved, it is - usually ignored. This translatesat

most often into-a simplification of descriptiOns, so th4 both direc-

tion and strength. of links are ignored for some purposes.)

In this section we have covered some of the conceptual issues
r. .

regarding relationships between the paits. In the next'section we

present an.example of an operational ap ication of these consceptsto

a specific type of system -- human commun cation systems.-

a

A

a
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HUMAN COMMUNICATION NETWORKS

In Chapters One and Two we discussed some:early conceptual

models,and operational Methods that have been used in the study of

human communication.systems. In order to develop better methods-to

accompltah this task", we decided to first get a better understanding

of what the task was about. This seaiihh for clarity led, the develop-

'Ment'of a g al analytic approach, GASSICS, that can be used in any

kind df system from which the appropriate data are available. At this

point we turn back to 'a focus on communication networks in social t

systems.

We begin this. section with a'quick review of the basic

system concepts, showing how they translate into communication network

terms. After we have discussed the operationalization of the concepts,

we turn our attention to actual data collection techniques. Here we

Will discuss both some general considerations and -Slone characteristics

specific to each of several methods.

General Concepts

The humancommunitation,system is an information system.

This means that the relationships between the parts orthe System --

the people -- are information relationships, rather 'than matter-energy-

relationships. Human behavior is regUlated (constrained) by communi-

cation relationships. Social influence (constraint) is exercised

through communication. Thus, the network is a representation of the

real system, where nodes stand for people and links for communication

relationships. t

1. Content or mode

We said earlier that in systems where the interactions between

the parts involve information exchanges, there could be Many concurrent

"modes" of.interaction between the parts. In communication networks,

this translates into a multiplicity of types of comiomicationrela-

tionships. Formal communication networks in large organizations,

friendship communication in social systels, new information communication

4

4
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in. agricultural systems, communication about political events, and so

on. In any given system, .there-could.be any number of overlapping
1

nets, with each person having a differeyt role in each.' The first

thing to do is narrow the field pf interest to a single functional

type of communication like, maybe, communication aboutmatters related .

to getting .the job done. li other areas are a'interes it;ese

would be examined separately and then in the context provided by the

whole set ofrelationships.

2. Strength

Strength was conceptualized as the amount of constraint or
**N.

influence exerted as a result of the relationship. In ;fie study of

communication networka,, strength has most frequently ben operational-
,

ized aa.frequency of interaction. Thus, people who interact frequently

are assumed to influence one another more than people who interact

infrequently. .10

Other operationalizations add importance, so that important

interactions lead to stronger links than unimportant ones. Still

others measure strength in termi(of the average 'duration of interap-
;At

tions, or in terms of total number of minutes apent inteEacting in a

particular week. The important issue here is that the strength of

the links has to be a single number that varies as a ratio of the

strength of the relationship.

If the strength of the relationship is assumed to.vary as a
/

function of the amount of interaction, a first approximation to a

ratio measure is accomplished by asking people how much-time they spend

talking with one another, and coding the responses in an approp4te

way. For example, if we provide categories like: 4

(a) once a month or less;

(b) once or twice a week; /

(c), once or twice a day;

(d) several times a day ;'

A.

t
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%, iiiirWsii(1 have to assign numbers to the categories in suEh a way that a

ratio-level'approximation is achieved. If we translatothe categories
,

-- P

into number of interactions per month; we might get: .

< r

r

CATEGORY' CODING

Once a month or less = 1

Once or twice a week = 8

Once or twice a dAy = ' -/7 %
Several times a day = 64

'
This scheme provides a roughapproximation to a ratio_lowel scale of

relationship strengths. More sophisticated methodi are described in

later sections.

3. Reciprocity/symmetry

The meaning of the idea of-symmetry is important in communi-

cation networks, although there may often bejifficulties,in getting,

an operAtionalization of the relationship that produces results n

agreement with the conceptualization upon which it is based. ,Let

explore the issue more carefully.

In many of the communication network studies that have been

// done using the methods describe4 in'this Part, the relatfonShip has

been "talks with." For elxample, 'Who do,you talk with aboui.mitters
.-

.

related to getting your job done?" or "Who do you talk with aboutNnew

varieties of seed or weed aOray?" or "Who do you talk w1th.in,yoitr

spare time?" The last example is cleaily based on a symmetrical'
Cm

relationship -- there is no sense of direction or unevennesin the

relationship. If one p s talks to another,, the second will also

talk to the first in this kind of relationship, which IS based oft the

sharing or transaction' mode of communication as' a'two-way 'Process.

(

0

In the example about new innovations, there is a different

situation entirely. The questions asked of respondents seldom take

the udbiased form of "Who do you talk with . ." Rather, they will

clearly ask respondents who their sources of information are. Rather



www.manaraa.com

107

than a two-way process of sharing, this isa one-way'flow of inforMa-

ti n from a source to a receiver. This .is obviously-an asymmetrical

re ationship- As might be xpelaid, the percent of links that. are
-

reciprocated is such lower in the innovation network than it is in
the friendship network. Typical ballpark figures heriwould'be about

2 percent reciprocated ii the asymmettical case and.over 30or 40

percent in the friendship one. Why aren't the figures closer }to zero'

and 100 percent? 9
011

' We discussed a number of possible reasons in the first

. section. There could be measurement error. The relationship could

be incorrectlyr,tonceptualized. The relationship could be Incorrectly

operationalized. There could be a combination of all three.

a..
The most legitimate argumentseems to be that the relation-

,

ship is not clearly enough understood to be correctly conceptualized

and operationalized. For example, two people are seen having what

appears to be a conversation. One of the two might say that it was a

two-way conversation. The other may not. The relationship.might seem

symmetrical to the first but not the second. This kind of problem

si

cF

ialkost bothersome when the people in the system are different in

terms of status, power, confidence, knowledge, and so on. The problem
.* 1

is th there are more than one kind of relationship, at the same

time. There does not seem to be any quick-way aroundrthis kind Of

difficulty, at least when the relationship is approached in terms of
. .

communication between people.

In other situations, the problem is clearly with the opera-.

tiongqiiitiOn. One study, for example, dealt with "problems" in the

day-to-day working of a grou0 of edlifhted men. The question asked ,

"who they went to to get it taken care of." The investigators expected

a situation completely different from the one they observed In the

data, 1 When the respondents were questioned, it was Clear that they had .

a completely different interpretation of the question from the one, the

investigators thought was the only possible interpretation. Becaltse.
.4

of this mix-up, the investigators were actually measuring a'relation-

ship not at all like the one they had in mind. These are some of the

difficulties encountered in the area of limmetry.

- 119
414

I.
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Actual Instrumentation Considerations

We have already seen a very simple example of the kind of

questions that night be used to gather network data. Iii that example

and in the discussion that followed it, it nay have seemed that there

WAS an iltplicitassumptionthat network data are gathered from people

by asking them questions or giving then printed questionnaires to fill

out. Although this has been the method used most often, it is not

the only way. In the collection of date in rural villages.in less

developed areas, face-to-face interviews Will have to be used instead

of less perional questionnaires. Sometimes even this method will not

work and the investigator, will be forted to get information from

"key-informants" -- people in the'System who know what goes on. In

other-situations, other methods will have to be'used. For example, a

network studyWasdone on a long-deceased seventeenth century New

England village, where the data on friendship patterns was gatdered

4 from court and church records. While'these other methods are the only
0

jaes that produce useful data in some situations, they will tot );fla

discuised extensively here. Instead, we will devote most of the-die-

cmssion to a set.Af methods that is being used in studies,of comemni-

cation networks in large -scale organizational studies. When the dif-

ferences between, these fairly structured settings and the conditions

of the particular syste6 under investiptiOn are recognized, appropriate

measurement techniques should not be too difficult to'develop.

In the typical organizational setting it is possible to

assemble large numbers of people who can work easily with paper-and-

pencil instruments. Iwthis kind of situation, it may only Wm a few'

hours to collect the data f m ; system haying several hundred members,

if everything goes well.

There are two basic kinds of issues that have to be faced when

aesignfng instrumentsjor, use in these settings. The first concerns

the translation of the conceptualized relationship into operational

terms. The second concerns some 'practical considerations and formaiiing

a of the initrumeat.

0

4

1 g

4
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1. Scaling

Once the content area has been laid out and the general

format of the questions has been decided upon, the scaling of responses

(has to be considered. The require:4W is a fairly reliable, single
.

value that varies iia.ratio of the.strength,of the relatiOnship.

We discussed briefly,a very simple approach to this in-the

beginning of this section. The problem with that simple instrument is

that it ignores the difference between very important exchanges and

'very unimportant ones. It night be assumed that a, frequent unimportant

relationship ib as strong as a less frequent, but more important, one.

In this case, respondents might be asked to indicate how important the

relationship is, in'addition to how often it is used. The two,numbers

wOuldthenbecoMbinedintoasingle.indicator of the:strength of the

-relationship. The example below showi(bow this might-be done.

Please indicate by circling the appropriate numbers
which people you talk to, how often you talk to
them, and how important the interaction usually is.
Use the coding system shown We.

109

FREQUENCY
1 = once /month

2 = once/week
3 = once/day
4 =several times/day

IMPORTANCE
1 = slightly important
2 = moderately important
3 = very, important

4,= cru4a1 to hurviyal

NAME FREQUENC4,Y IMPORTANCE

John Jones 1 2 3 4 1 2 3 4

EmilyNStuart ,1 2 3 4 1 2 3 4

Tony Mann 12,2 3 4 :- 1 2 3 4

Belinda Humm 1
/

2 3 4 . 1 2 3 4

Mark Smith 1 2 3 4 1 2 3 4

1141,

It is necessary to combine the frequency and importance

scales to get a single number. To dq this, we would form a matrix

where the rows are for the values of frequency and the columjas_are--

for importance, as shown below. We would then decide which entries
t 11

have the highest and lowest values. Obviously, these wouldbe the

I .2
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Aro

9

7

IMPORTANCE

aeireral/day ? ? 1?

-Onte/day '? ? ?

Once/week . .? 'I' ?

Once/iOnth ? ''?. 1* ?

scales can simply be

-In this example

of the original.scal

4

.3

2

1

tif 8 12.16
3. 6 9.12
2 4 , 6- 8'1 AZ 3. 4
1 2 3 4

.;,
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top 'right entry and the bottom left

one in the example.

'le The next step is 0 assign

the intermediate values.. This is

,....more -difficult. For example, how

does the top left entry compare

with thebottom_right ono? -What.

about other entries? If the'values

shown here are acceptable, th!etwo

multiplied together _to give the final results.

w\formed the strength indicator by 'taking the pr uct
4

es. In other cases, we would Use a linear

instead. For_example, say we, had separate

scales fOr face--to-face and telephone inter-'

actions, as' shown below. We might pecidetthat

face -to faee inters ions iitle twice.1 as impor-.

taut as telephone iai4rac as' because off the

The Matrix with Values', additional'non -verbal in rmaition that is '
Filled in

transmitted in the face-to-face interactions.

the final strength in

Then w4Would use this formula for _calculating

cater: Strength is 2*Face-to -Face + Telephone.

1

Please indicate how much'time yo und talking
to' each person in inzavera4e ek (in minutt,

NAME-FA NE
Robert

- (

Jamts'
, .

* _____.
Annie "-'" rFrank .

'Suian ,

The important point here is that a a e ratio-level incite,.
4

cater (or,aa apfroximition of one) must be available-is an indei of.

the strength of the relation ip..41ot of trouble can be saved by
. - r

b

41,

\
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constructing instruments so that they can be easily coded to give

ratio-level data. If this is not done, the data must be transformed
.

to give ratio data at the time of analysis, if that is possible.

2. Other instrumentation Considerations

In the discussions above we have seen several examples of

instruments that might be used to collect network data. They are

all variations of the same basic design. ,Some types seem tq work

better than others in different situations. For example, there are

two ways of getting the respondent, to provide the names of the people
A

he or she is linked to. The first Uorks well when diere.are less

than about two or three hundred people in the organization. WiihrthiS

method, a list of all the people is provided and the respondent simply

filli in the appropriate 4pots'on the instrument. An example ofthis

type is shown in "A",below.

How often do you interact
with the people named here?

..41ease indicate the appro-
ximate number of interac-
tionsper week for both
job - related. conversations

and other conversations.

NAME JOB-RELATED
Sam

Maly
Bill

OTHER
ANL

A

In the column on the left,
please write the names of
people you talk to. In the
other columns please indicate
how many times you talk to
these people in a typical
week. Do this for bo ob-
related conversatio
other conversations.

NAME JOB-RELATED OTHER

'B

In the first type, the respondent only has to recognize the

name of the person he or she is linked to. In the second type, as

shown in B, the respondent is asked to recall, the names., The second

type ,is appropriate for very large organizations, where it would be

impraCtical to provide a list a all the names because of the length

12-

AO.
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of such a list, or for systems where all the names of relevant

people are not known. ,1

There is likely to be a difference in Ile number of con-

tacts reported on the two types, f instruments. Specifically, since

it is easier to recognize a name on a list than to.recall a name from

memory because the list of names serves as a prompter, there are

generally more,contactereported with the first method than with the

second (Farace, personal communication, November 1975).

A second way in which instruments may vary is in the method

of coding the strengthfof interactions. A variety of approaches have

been used here: (a) interaction frequency may be coded into cate-

iories as shown in "A" below; (b) interaction frequencies may be

coded directly, as shown in "B"; (c) interaction duration may be

coded into categories, as shown in "C"; or (d) interaction duration

may be coded directly, as shown in "D".

FREQUENCY DURATION
1. Once/month
2. Once/week

. Once/day3.

4. Several/day
1114.

How many
times in
the last
week?

1. Less than 5 miner
2. Less than 10 mins.
3. Less than 20 mins.
4. Less thmi 30Mins.
5. More than 30 mins.

How much
time in
the last
week?

A B C D.

From,a theoretical perspective, it would seem that the

method shown*in "D" above Would provide the Moste4alid information.'

However, it is harder to estimate durations of interactions than

frequencies of interactions, as in "A" and "B", and it is harder to

estimate precise numbers than simple cttipAes, as in "A" and "C".

Thus, the method shown in "A" is probably the easiest for subjects to

use, while the one in "D" provides the best information. Again, there

have been no empirical, studies- comparing the alternative methods.

When several content areas are to be used at once, it is'not

necessary to have a separate instrument for each one. Instead, they

can be combined into a single form,.twith multiple columns for the

1 4
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different content, areas. An example of this is shown below, where

three separate content areas are being measured at once. In analysis,

these 411 be treated as three separate networks which might later.be

compared and examined for similarities or differences.

Please indiCSte how often you talk to the following
people apout each of the three topic areas. Use
this system for coding your responses:

1 = once/month
2 = once/week
3 = once/day
4 = several times /day

NAME

PRODUCTION:

GETTING MY
JOB DONE,

DAY-TO-DAY
MATTERS

INNOVATION:
NEW ORIDEAS
WAYS OF DOING

THINGS

SOCIAL RELATIONS:
INFORMAL FRIENDSHIP
CONVERSATIONS, ETC.

Harry
Timothy
Maude ,,

Jenny
Donald

-,

.
.

Michael'

An Alternate Operationalization of Strength

Throughout the discussion of relationships we have been

using "amount of communication" or "frequency of communication" as an

operationalization of the "strength' of the relationship between a

pair of people. The frequency with which this operational defidition

of. relationship strength is used by investigators in the field is

very high. The only significant diviation from this course that is

used fairly often involves importance information as well. There have

been no studies published using any other operational definition. The

reason for this is probably simple inertia. People are used to these

measures. These measures appear to he straightforward. They are

easily "interpreted" to clients who usenetwork analysis as diagnostic

tools to monitor communication networks in their organizations.

125.

v4,
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4
However, these may not -be the best possible measures to use

for our present purposes, which are to gain a better understandingmbf

how complex systems work. A possible alternative operationalization

bypasses a step in the'chain of-assumption imade with the "standard"
E '

approach. In the standard approach,'it is assumed that the more a

pair of individuals interact, the stronger ilithe relationship. In

the alternative approach, people would be asked directly how

the relationship is. The instrument might look like this:

Please inditate which of the following people
influence you as you complete your day-to-day
job activities. Use the following scale to
show how much influence each person has on you.

,9 - no influence at all
NI = slight influence,
2 = moderate influence
3= strong influence
4 = total control

An alternative scale would be:

Use a scale of one to ten, where one is very
slight influence and teR is total control.

This method.bypasses the intermediate step of translating

communication frequency into relationship strength. For this reason

it semis to give a more direct measurement of strength. However,

there are problems. First,,it would seem-to &I- more difficult for

respondents to think in terms of the relatively abstract "influence"

than the more concrete "How many times do you talk?" This has not

been tested as yet, so the validity of phis objection is in doUbt.

The second problem is that neither of the coding systems suggested

above is known to be,a ratio=level indicator. Of the two, the second

would seem to be a better bet for a valid ratio-level indicator, butte

this has not been tested. However, the "standard" indicators have

not been'validated empirically either, so we are on no less firm

ground with the new approach.
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We are therefore faced 'with a trade -off: the standard

approach is familiar and easily used in a consulting framework, while

the new approach is more direct and more useful in a theoretical

framework. Perhaps it,would become more useful in a consulting frame-

work if the clients could be educated about its benefit! and inter-

pretations. This will not happen, 'however, until it is empirically '

tested and found to be both useful and valid.

Diaries: An Alternative to Recall Methods

The "standard" instruments discussed sive all ask iespond-

ents to either recall how often they talked in some past period or in

a typical period. An alternative to recall techniques is the "diary"

technique (Conrath, 1973). With this method, respondents carry a card

on which they record each interaction after it takes place. Proponents

of this method claim that it produces more accurate data than recall,

techniques, although this claim has nevex been tested empirically. I

L4 one preliminary comparison, however, in which the two methods were/

compare4 for the number of links, the difference between the two i

methods was less than five percent (Goldhaber, personal communication,

October 1975). One important difference is this: if respondents

indicate the time at which each interaction takes plade, actual in-

formation flows can be monitored as they spread through the system.

Both of these points.are valid and important. The reason

diary techniques are not used more often is their obtrusiveness.

Imagine having to carry a card around and having to write down every

significant interaction. In a recent study conducted in a Canadian

hospital, doctors and other staff refused to cooperate with the

investigators, claiming that it wasn't possible to be bothered with

the logging procedure after each interaction (Goldhaber, personal

communication, 1975),

The trade -off, is thus that, although the diary should in

principle produce better results1 it is much more obtrusive. We
I

thus have another situation where something like the Heisenberg

`Uncertainty Principle nn physics seems to work in a socialacientif c

gip
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setting: the more accurate the measurement device, the more obtru-

sive the measurement process. 'At the present point it is not clear
r

where the'best combination of accuracy vs. obtrnsivenes will be.*

Until some empirical information comparing the two methods is"coll.

lected, it will not be possible'to'say one method is superior to the

other.'
.

The ahalytic.method_ptesented in the next chapter is comps-

tible:ith Mich of the types of data, since diary data can be easily

converted into the format of "standard" network data.

ti

Higher Levels in Communication Networks

The(data collection methods we have been describing all

work at the same level of analysis -- the individual person. This

is the appropriate level for the first time through the GASSICS loop.

When the first GASSICS cycle is completed, it may be necessary to

move up to the next level. In this case, nodes will be groups of

people, rather thai individual persons., The Collection of relational

data from groups is problematic.

The task of this phase of the GASSICS cycle is to determine

the relationships among the groups, i.e., "Which groups are related

to one another?" and "What are the characteristics of these relation-

ships?" bne approach that has been used to answer the first question

is to look for links between nodes that are members of different

groups. There are problems with this method.

4

(1) How are links between individuals who happy to be
members of different groups distinguished from links
between groups? If the arguments suggested by Simon
(1973) are accepted, relationships between groups
will notbe the same as'relationshipsbetween
individuals.

(2) How is the strength of the relationship estimated/
There are usually multiple links betweet the members
of one group and the members of other4g oups. Is
the strength of the Sink between two groups the sum
of the strengths of the links between members of one
and members of the other? Do multiple links imply a
stronger relationship than a single link?

12:
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,

1

(3) .Haware indirect links treated? Do links through
liaisons or others count? How are they combined k

*with direct links?

\It seede more appropriate to retreat to the conceptual defi-

nition of "link" and construct a new operational p'cedure for detect-

ing links'between groups'than to bend the procedures used at the lower

level of analysis. Thus, links are indicators of relationships. A

link between groups would indicate that the groups are related,to

one another -- that they are constrained or influenced by the relation-

ship. IherefOre, it is not enough to say that one member of Group A

is related to one member of Group B ,This implies only that one

member is related-to the other. It says nothing about the groups.

If those two members happen to be very influential in their

respective groups, the link between them might be a link between

their groups after all. But this question cannot be answered with

the standard type of network data that are usually gathered.

If the data are collected in a way that allows influence

patterns, or perhaps information floWsto be traced, it may be pos-'

eible to distinguish between the.linkswe are interested in and the

ones we wish to ignore.

An alternative approach Would be to go, back to the system

and ask the members of groups who (or which groups) they think in-

fluences. their group.

It may vet), well be that group interactions take the form

of exchanges of,materials instead of exchanges of information: This

would require a different ,type of measurement altogether.,

Like the issue of transitivity,' the issue of. what consti-

tutes a link between two groups is a question which needs to be

answered before progress in that direction can be made. The solution

to the problem will be deferred to another time.

Ar
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CHAPTER SEVEN

STEP TWO OF THE GASSICS PROCEDURE:
THE MEASUREMENT OF STRUCTURING

ChapterSix dealt with a method for collecting data from

members of complex systems. The specific example developed there

was communication systems. This chapter develops theistatistics

needed for'the test bf deviation from randomness which constitutes

the second step in the GASSICS cycle.

Rather than starting right off with a set of a rior

nclions about structure 'we are adopting a more "empirical" app

Later in the chapter we will build uponthe very simple model of

structure as deviation from randomness in order to see what the Model

implies with regard to structure at the whOle-system level. To do

this we will need to use the logic of alternative descriptions to

move from the microscopic level of analysis at which model is

stated to a more macroscopic level, where we can seemore clearly

the implisetions'of the model on the whole system. When we have done
/

this we will havea set of structural characteristics we can use to

'direct our investigations into complex systems'where we hive informa-
,

tion about the interactions of the parts. In addition to seeing how

We should look, we will see what to -look for.

In the next section we will develtop the statistical tools

we need tio move from the microscopic level of the raw data to the

-microscoR level of system structure; There will be. several steps

.along the way. First we will examine the idea of interdependence,

applying it to communication relationships as an example.. We will

show how -this move logically leads to,the selection of a partiiular

approach to the quantification of structure. The second step will be

to work through the model for random systems. This will provide the

baseline from which I& measure driatiobsr which allows us to measure

structure in the same terms we.uded to define it. We will base the

4
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random model on the assumption of zero constraint. In thistrandom

system there is no pattern to the set of interrelationships among the

parts. Any pair of parts (nodes) is as likely to be connected as any

other pair. We will take this initial statement through a transforms-
/

%tion of alternative descriptions to a system-level statement of

"random" structure. The third step-will be to work through theAtodel

aggIii3N, this time using observed values instead of values predicted

by the assumption of randomness. The result will be'r szatem-level

description of "observed" structure. Finally, the,"observed" will be

compared to the "expected" -- giving a measure of the deviation from

randomness -- which is how we defined structure.

,
Preliminary Discussion

Before we begin the operational discussion,it is appro-

priate to clarify a few points. First", ware dealing specifically

with relationships between elements in the system. At this level of
, .

analysis, we are not interested in the microscopic issues, such as

"Is there a relationship or not?" Second, in this preliminary model

we found it necessary to make some simplifications. For example, in

the statistics that follow, we have reduced relationships-to binary

a -Or-none oceurences. This was done at the expense of a Partig

------)

lo s of information, in order to keep the complexity of the statistics

t a level that was manageable. In principle, however, the same ideas

could be used for continuous data. There are problems,,both with the

use of binary versus continuous datkand with transitivity assump-

tions that have not been worked out at this time.

Third, we ha$e adopted a terminology that-Preserles the
\

distinctions made in the preceding chapter between relationships in

the system and links as indicatOrs of thogle relationships, betweeri

the system itself and the network of links, and between an element
,

in the. system and anode in the network.

Although the discussion throughout the chapter is couched

in terms of links between hodei which are menbers of networks, the

fact that the same ternAphave been used to cribe ommunication
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networks should in no way be interpreted to mean that the equations

developed here are specific to social networks. The equationiTthem-,

sel.i/es are general, and can,_in principle, be used at any level pf

analysis in any system for which, the proper relational data are

available.

Ou; final goal is a set of measures with which we may

operationally. determine how much structuring there is at the whole-

system level. After we have derived the appropriate equations, we

will show by use 'of some examiaes how this measure is related.to the

amount of organization in a'few simple systems.' In a discussion at

the end of the section we will suggest some implications this approach

has for the question we asked earlier: "What should we look fore

OPERATIONALIZATION

Let us begin with a system composed of N elements with L

links distributed among the elements in some way. Each link indicates

that a certain pair of elements is connected by some kind Of functional)
,

relationsnip; the exact nature Of which is not immediately important

,here. Let us asaume!that the number of links, L, is less thin the
1

total number possible, which is L
N(2

-1)
. This implies that

nodes, on the average; will have less than the maximum possible

number of links to other nodes that they could have,,i.e., the

system's density (or connectiveaess), expressed as the ratio of the

observed number of links divided by the maximum ;issible, is less

than 1.0.

System Density .(conne tiveness)
2L

=
N(N-1,

If.the links are randomly assigned to nodes, without dupli-

cation or reflexive links, the average number a links per node will
L2

be ir . Since there are always exactly N-1 posmible alternatives for
v

,each node to have links with, there is some freedom in terms of where

the links Will actually be. For example, if there are 11 nodes.

(Eq. #1)

and 22 links, there will be, on the average, four links for each node.

J
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(It takes two nodes for each link.) For each nodelhere'are 10 other

nodes that could be connected to with links.

Now, if our network is truly random, we will have no cue as
. .

to where those links will be. They will, distribute normally across
/,

the entire network. Barnett (1971) Showed that in such a network

there is no differentiation of the system into parts. The relation-
,

ships between individual elements will be independent of one another.

That is, even if we know. where some of the links are -- if, for

example, we know that B is linked to A and C -- we can\pay nothing

about where the other links are; in other words, we cannot tell if A
0.

is linked to C. This example is shown in Figure 1.

. On'the other hand, if the network is structured, the rela-

tionships between pairs of nodes will not be independent of one

another. In other words, in a structured network, the links will be

at least partially interdependent. We would.like to be able to

measure the amount of interdependence. But how can we do this, when

the only information whave is who is 1.1knked to who?

The logic of alternative descriptions in complex systemic

tells us that if we focus our attention on individual nodes or links

we will not be able to seethe kind of interdependence We are interested

in here. We need some way of looking at larger sets than individuals,

since interdependence requires more than one unit. in fact, since we

are interested in the interdepeitence, of links, we need to look at

sets that are large enough to include at least two links .,__The smallest

set of nodes that will include two, links has three members. But how

does this help us? How can we tell if any pair.of links art inter-

dependent? With the data we have, we cannot. If all we know is/that

A is linked to B, we can say nothing about possible links from A or

B to some othet node, say C. C could be any other node in the system.

There is no reason why we would or would not expect a link to C.

However, if we expand our set to include three links, we do

much better. If both A and B are linked to C, we can look a the

possibility of a link from A to B. f.If A, B, and C all have to. coordi-

nate their activities for some reason, we would expect a link from A

,

44,4
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CONSTRAINT AND THE ORGANIZATION OF LINKS
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FiARE la
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FIGURE lb

O

FIGURE lc

If we expect X to have some number of
links, say 2, but know there.is no
constraint, the links could be anywhere.
Furthermore, we have no clues about
links between other nodes to which X
might be linked -- for example, B and C.

Even if we know that Xkis linked to B
and C, we can only guess about whether
or not B is linked to C, since the links
are all independent of one another.

ff4the links are not independent, that
is, if they fit together in some sort
of pattern, we are in a better position
to predict what will happen. In this .

example, we might find that if X is linked
to both B and C, the probability of B
having a link with C is twice as high as
it would be if X did not have those links.
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to B. If, however, A an4 B are independent of one another, we would

not expect them to be linked any more than the probabilities would

predict for any pair-of randomly selected nodes. Here we have.avay

of telling how much interdependence there is -- by counting the,

number of occurendes of sets of three nodes with three links. We

can calculate the number of these "triangles" we would expect by

chancre. alone (that is, in a random network), and compare this

"expected" number to the number we actually observe. If we observe

more or less thlin expected, we can infer the existence of some struc-

turing "force" which operates at the level of the whole system. Why

else would people organize themselves in such a way as to maximize

or minimize the number of triangles?

"Triangles" and Constraint

Let us explore the concept of "triangles" a bit more before

we take up the statistics of the situation., It is probably not yet

clear why the number of-triangles is related to structuring. Let us

see what the nodes in a network have to do in order to "make",triangles.

In order for, there to be a triangle, a node must interact with other'

nodes which themselves interact with each ottle. If the original

node interacts with only a few of these tightly Interconnected nodes,

..and "wastes" the rest of its links intereCting with nodes that are not

linked to the tightly connected group, the number of triangles there

can be is reduced. This is shown in Figure 2, where A has the maximum

,number_of triangles that is possible, given that it has four links.

Node B, however, has divided its links among two sets of nodes which

themselves are noe`connected. As a result of thii, it hiS.--only two

triangles -- one-third of the maximum for a node with fOur links.

Node C is an even more extreme case -- here the links are spread in

such a way that there are no triangles whatsoever.

The point to be understood from all this is that in order to

maximize the number of triangles, links must be between nodes which

already have a large number of mutual contacts. There-will be gfoups,

each of which is composed of a set of nodes, which, to a large extent,

2

135.
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confine their interactions to other members of the same group. There

'will be very few links between these groups, because this would lower

the number of triangles that could be formed. The groups will be

arranged in a very peculiar way -- in general, the number of members I

in each group will be equal to roughly the number of links had by
_ .

each member of the group. In addition, all the nodes in each group

will tend to have the same number or very close to the same umber-of

links. In other words, each member in a group having eight embers

will be likely to have seven links. Nodes with three links will be

grouped in sets of four, and so on. An example of such a network is

shown in Figure 3.

The highly structured network shown in Figure 3 can be co4-

trasted with one in which the number of triangles is minimized. In

this kind of situation, nodes do not have links with other nodes which

are linked to each other. There will be no differentiation into

groups because this is what raises the number of triangles. An

example of this situation is shown in Figure.4.

The following exercise will help to make the preceding

discussion clear.

40r-

.-Construct a network of about 10 or 12 nodes. Put
in enough links to give a connectiveness of about
0.25. Use a random number table to assign the
links-to pairs of nodesYby drawing pairs of ran-
dom numbers and connecting the nodes indicated by
the numbers. .Don't duplitate any links and don't
link any.nbdes to themselves. ,Count a link' from
A3o B the same as one from B to A. Examine the
overall network obtained. I,t is not likely to .

'show any patterning or differentiation into groups.
/4ow; repeat the process, except add the rule that
allows only, even-numbered nodes to have links to
other even-numbered no4ee, atd only odd-numbered
nodes to have links to other odd - numbered nodes.

Now, count the numbei:of triangles in each network.
There should be more in the second thari in the
first. If,the process is repeated again, dividing

the entire set into three or four subgrpups, the
results are even more striking.
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Figure 3

THE MAXIMIZING NUMBER OF TRIANGLES
WITH GROUP STRUCTURE
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Figure 4

AINIMIZING THE NUMBER OF TRIANGLES
WITH GROUP STRUCTURE
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The moreconstraints that are imposed on tile set of inter-

actions among the members of the system, the more triangles there

areuntil we reach a maximum where fuither increases in constraint are

no longer possible.

Thus, the number of-triangles is directly related to the °

amount of constraint and; therefore, the amount of structuring in the

network. All of-these three are proportional to. the amount of dif-

ferentiation of -the system.

Obviously, the numbei of triangles is a very powerful descrip-

tor of the network. 'But this is only true if all networks are the same

size and have the same number of-links. It remains to put this'neasure

into the form of &standardized metric, by expressing it as a fraction

of the maxiihm number of triangles possible, given the size and density

of the network. In addition, we will need to be'able to calculate

the number of triangles we would expect in a random network, for use

as the baseline from which we will measure deviations.

# .

The Expected Number of Triangles: The Random Model

The derivation for the expected numbei of triangles in a

random network is as follows.

Given any link, say from A to B, there are N-2 poisible

triangles involving this original link because there are N-2 oter

nodes which are all candidates for the third vertex of the triangle.

For,any particular chosen pair of nodes, the probability of there

being a link connecting the pair is
N(N- 1)

is highhich equals the system

density. There are L and if we eliiinate duplica-

tions involving permutations of order we get a total expected number

of triangles of:

2L 2 4
3

T
e

='(N-2) ( )
(L _) L 04-2)

N(N -1), 3 \(N(N-1))2' (Eq. #2a)

t

or, in parametric form, using system density, C, as a seal factor:

Te = (N-2) (11) C2 ,(Eq. #2b)

140
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This 'number will be seen to be equal to themaximum number of tr

possible whenever L is at its maxilgUm of Lam. This maximum nume of

triangles is given by:

T =
N(N-1)

(Eq. #/3)
0-2)

max 6
. I

In addition, the ratio between T
e max

and T
aX

Is related to system d n-
.

sity C as:
.

(N-2)(3 ) C
2

2C21.
se mm C3T N(N-1) (N-2) N(N-1)max

6

(Eq.
4)

Variance in the Distribution,of Links

These calculations were based on only two. parameters --

the number of links, andN, the number of nodes. If the network is

totally random, the links will distribute normally across the ent.re

network. This means that we#could.examine the distribution of links

across nodes and would expect that this distribution would also be-.'7\

normal. Let ti be the number of links with node i. In general, the.

t 's must satisfy the equation Et
i
= 2L, where L is the total number

of (bidirectional) links. Also, no timay be greater than N-1 or less

than zero. Since theresre N noses, the mean of the t 's, t, mustbe
2L

. It, too, ,has a maximum value of N-1.

In the totally random network, the probability of any parti-
,N(Li)culler link is . This can be derived either by dividing the
1

number of links observed by the total number possible, or by dividing

iby the maximum number for each node.

Since each node has N-1 chances to have links, with
2

P a N(2L1) = C, the binomial expansion gives the mean, 'of-
2L(N-1) 2L

np
N(N-1)

= , whi9h agrees with the value derived above.

The expected variance would be npq = S: = np(1-p), again by the bi-

=Iasi expansion. This is:

2L N(N-1)-2L
)

2L(N(N-1)-2L)',
#5)S: = (N-1)(

N(N-1))( N(N-1) N2(N-1)

14
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Figure 5a shove a plot of the expected variance against L, for dif-

ferent values °dbl. Figure 5b shows a general plot of S: against

L and N.

The F test can be used to compare an observed S2 to the

expected value of S2. The observed value, S, is Calcute4Oes:So,

S2 -1)2 or, "1.2
o

N
i (Eq. #6)

N.

.\

The fdegrees of freedom are N-1 Mnd N-1. Figure 6 shows a general plot

of S4against C and N with significance regions for p<.05 and p<.01:

A significant deviation from S2
e
means that the distribution

of ti's differs from what is expected by chance. This would mean

that either some nodes have a disproportionately large number of the

links, compared to the rest of the nodes,,or that the nodes have un-

expectedly uniform numbers of links, compared to what is expected by

chance. in general, ql's higher than S: will lead to inflated measures

of structure, while valuei lower than S: will tend to be biased in.the

-opposite direction.. This is, illustrated in Figure 7. In these cases,

we would use measures for T
e which have been corrected for the parti-

cular distribution. of L 's. These measures are discusped in the

following paragraphs.

Correcting Te for the Effects of Li,

What if the distribution of Li's is not normal? For example,

fmost of the links could be concentrated in a small part of the network. -*
. A

We would expect a different value of Te if this were the case. It is

possible'to "partial out" the effect of differ nt Li's by taking the

following approach. For every trianglet is a pirt of, a node must

have a pair of links. For a node with L links, there are IV- such

pairs. Summing across all nodes, we get the total number of these

pairs: Total pairs 1.I(b(L
i
- 0achof these'pairs defines a2 i

triangle when the third link is added. The-probability,of this, third

link is equal to the probability of a link betwee0 any given pair of

nodes; or
N NLl Di4iding by threat'? eliminate duplication cans d

by-*der permutationi, we get:
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FIGURE 5a

0 100 200

L,

300 400

Plot of expected variance against number of links, for N's
(number of nodes) of 16, 20, 25, and 28.

1/4(N-1)

/. 3/16(N-1)

S2
e

1 /8(N -1)

1/16(N-1)

/le

FIGURE 5b

N(N-1) T N(4-1) 3N(N-1) N(N-1)

8
L-

8

(0) (.25) (.50) (.75) , (1.0)

C

1.

Generalized plot 9f expected variance against C. gote the maximum
value for Sg of\1/4(N-1) at the poi4,..where system density = C4 0.50

N(N-1)
(L=1/2 -----), or half the maximum number of links.

1436
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.

Generalized plot of S2 in units of Iiii(*ordinate) against system density,

C, in Units of the observed number of links, 1.,expresSed as proportion of

the maximum of
N(N-1)2-- (abcis (Significance values for N=20, df=(19,19)).

Region A- - Values of St2, in this region are not significantly different
"from the expected value, p = 0.05.

Region B - Values of S
2
in this region are significantly higher than

expected. '° pk0.05.

,Region C - Values of S,
2
in this region are, significantly higher than

expected. " p<0.01.
I

Region]) .- VItUds of S2 in this region are significantly lower than

A
expected. ° p<0.05.

Region E - Values of S: in this region are significantly lower than
expected. " .p<0.01.

14 el
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Figure 7

RELATION BE um S8 AND
ECTED NUMBER .OF TRIANGLES

Table la

6 7 V8 9 10 11I 12 13 14

a 6 3 2 4 1 4 4 .5 1

,F

3 °2

'
5

1

1 .

r 4

482

b. 6 0 2 5 1 1 6 4 5 1 2 1 7 68 0' 1 48

c

I-
5

,/

3 3 4 2 2 3 4 2

,

3 3 3 4 2

-
1 48

a

Table lb

Eti 37
2

SSo S
2

'
e

T
o -

TTeL

a. 48 3 2.5 2,4 4 4.4' r-
l

4'.5

b 48 _= 3
t

A
5.75 2.4 14 4.4 6.25

,,

c 48

, ,

3 °

A4*

1.0

r,

.

'''2.4' 1 4.4 3.8

) .
.

4.
. .

...

In [a] is shown a n ork, con*trutted bOrdoWing pairs of numbers from a
randommmbertable.Thet.'sdistribute approximately normally, with Scil

S.close to S 'In this ca4e,
i
the expected number of,triangles, Te, was closee

to the observed number of 4. ,

14-
7

The network shown in @j was con8tructed fTon
ing the'links so that Si) would be inereaS
this case, the expected number of triangle
of To = 14.

tructed f
e, To, 1;

The network shown in [c], was c
way as. to reduce S. In this

The relevant values are'tabled above for e 66mparison.

ewpne used .in [a] by rerrang-
Sg-does not equal Si. In

, underestimates the, true value

the one used in [a] in such'a
Overestimated by T.

14 r,
rJ
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(Eq. #7)

1)
for the expected number of triangles, after removing the effects of F

Li. This value will approximate T
e
when L

i
distributes normally with

S
o
2 ECti L)2= , the odlirvedvariance, close t6 the expected value

of S2
2L(N(N-1)-2L)

e
=

N(N-1)

Maximum Limits to T and S2

If L, the number of links, is some number less than the

maximum number posslble, L. , the number of triangles can be maxi-)

mized if tip links are constrained to a subset of thettotal popula-)

tion of N nodes. Thik subSet will maximize aftnumber of triangles'

when its size, p, satisfies this equation: L =)111.1)- 2 This value

is approximated bytn - V2E; for large L. The equation for the maximum

number of triangles for a network with L links then becomes:

T
2L( 2L - 1)(11,E - 2)

or n(n-1)(n-2)

m 6 6
(Eq. 18)

If the system density, C, is compared to the ratio between

T
'
the total maximum possible number of triangles for a network ofMaX

size N with L links == N(N-1)(N-2)
max 6

, and T
m'

the following rela-

tionship is observed:

L
1.58 1.58

C1.58 . mo
T

or
( 2L

1.58

) (
n(n-1)(11-2) c1.58

N (N.A.)
MaX N(N-1)(14-2)

This situation is illustrated in Figure 8, where all the links are con-.

strained to a subset of the total population,of nodes. Obviouslys,

.this is a trivial maximum. Notice that under these conditions, S2
. o- for this particular Nand L will be given by the equation:

2 .*E(Li-1)2 Al(n-1)-i)2 (N-01.2
(Eq. lki().
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Figure 8
OIP4

MAXIMIZING 1HE NUNIBER OF TRIANGLES
BY REDUCING THE EFFEETIVE N

c
N = Number' of Nodes = 20

Lo = Number of Links Observed = 66

n = = 12

L =
N(N-11

=
190

max "2

max
N6N-1) (N-2)

1140

n(n-1)(n-2) - 220
m 6.

66 =
Lam 190

Tm 220 107

max
1140

(.346)1.58 = .193

There, are tweafy nodes, but the links are confined to a subset of only twelve.
The ratio ofjobserved links to the maximum possible is .346. When raised to
)he 1.58 power, this value is very close to the value of the ratio of maximum
number of triangles for any network having 66 links to the maximum number of
triangles for any network having twenty nodes.

.
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where N is the number of nodes, n is approximately VIE, and i is the

mean of the s. i

The maximum number of triangles for a given distribution of

's can also be c cuiated, giving an upper limit of T
1
in which

the effects of the L 's have been "partialled out" as they were fOr

Tex Let the 'number of links with node i be Li.' For a node to be'

part of a triangle it must have two links, forming twpof the three

edges: For each pair of links with a given node, there is a single

possible triangle. .The maximum n4.6110er of triangles for any single

node with 1i links will then be equal to the number of pairs of links
f.

with that node, or
0

i`:42`.1) .

If we sum across all nodes and divide by three to eliminate

duplication, we get:

1
T
m.1 6

=
i
(1

i
- 1) (Eq. #10)

which is the maximum possible number of triangles, given the set of

N nodes and their
i
's. This number will equal T , T

e' g.

and T
e.

when
-m .

every node has the maximum number of links possible, which is N-1.

Wheh the total number of links is less than Lam, Tel.& will be less

lhan Tee but it will never be less than Te or Te.i.

Relative Structure Measures $

We have defined upper limits for the number of triangles;

given the number of links per node, and the number of nodes., These

limits are reaChed only under conditions of maximina constriine., We

have els& shown how to compute the expected'number of triangles',

given conditions ofzero constraint and how to remove the effects of a

particular set of fromfrom the expected number of triangles.' We have

thus defined a range,over which the number of triangles can vary as

constraint varies. This range.is shown graphically in Figure 9'.

Now, if we count the number of triangles in any given network,

subtract the number expected by chance, anctdivide the result by the
. /

difference between the maximum possible and the number gipelted, we --
, -

will obtain a value that ranges from 0.0 eo 150; where Zero indicates N,"

j

a

O.

a.
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c ,

0.0 10.2 0.4 0.6 p.8 . ,1.0

g = System Density Calculated as
2L

Generalized plot of-maxi.
triangles, T

e
,'against C

ndliber of triangles, t , and expected numberipf
max

em densitY. .

o

w

1F fir a network with -100 nodes, the maximmi 'RBIs& of 1. urOuld.be 1/20q(N-1)1 =
= 495'0. If -the observed number of^li s 2970', the,prOportion of

links would be ii-Hr = 0.6. With this density, .the range of triangles would
lie. on ,the Array/ marked "a". The expected proportion cif triangles.ig"given
(.6)3 = .216, which is point.,a" on the ordinate. The maximarpumber of triangles

'as a proportiorr of the total possible, for this given+ by (10 1.58

which is "c" on the ordinate,. The maximum number of triangles for N = '100 is
given th (100)(99)(98) = 161700. Thus, Te = (.216)(161200).= 34700.

6

law

I
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no structure other than that expected by 'chance and one indicates

the amount expected under conditions of maximum possible constraint.

This measure is insensitive to number of links,.L, or number ofnodes,

N, and thus can be used to compare networks of various sizes and

densities. The final equations are given here:

\tt4

(Eq. #11)S
o e

T. -T
m e

where T is the observed number of triangles, T
e

is the expected
° 4L3(N-2) /EVE - - 2)

number, , and T
m

is the maximum,
6

Controlling for the effects of Li, we get:

I

where T
o

is the

controlling for

1
for L

i' 6
t
i i
(t - 1).-i

S
T
m.L- Te.t

T
o
- Te.t

obeerved number of triangles; Te.L is the expected,
Li - 1

, and T
m.t

is the maximum, controlling
Li' 3,N (N -1)

SYSTEM -LEVEL IMPLICATIONS OF STRUCTURING

How'is a structured network different from a random or non-

structured one? A structured network will be more organized -- its

members may be arranged into groups or some other type of orderly

pattern. The more structured the network is, the more highly differ-

entiated it will be. The networks shown in Figure 10 will help to /-

make this clear. In Figure 10a, we have, a random network -- the systems

as a whole does not break down into parts; there are no intermediate-'
.

level groups composed olindivid s. 'Because of the low number of

:triangles, there is relatively little opportunity for ...al individual

nodes to work together to coordinate theiractivity. Iebrder for a

number of nodes to work together as a group, they must be able to

interact with each other enough to coordinate their behavior; this'

'seema to demand network configurations rich in triangles..

15
.4.



www.manaraa.com

I 140

FIGURE 10a

p.

FIGURE 10b
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I 1 2 .3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti 6 3 3 4 2 3 4 5 5 2 3 34 5 1 1

TABLE 2a
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The distribution bf t.'s.for the networks shown in Figure 10. The 1
distributions are ideAtical for all three networks, and are approxi-
mately normal. So is close to S.

N L 97 Sooo2Se T T
e

T
e.9,

T
m

r

T
met

S

A 16 27 1.69. 1.97 1.85 6 2 - 6 35 26 .138 .00

B 16 27 1.69 1.97 1.85. 9 2 6 35 26 .241 .15

C 16 27 1.69 1.97 1.85 /17 2 6 35 26 , .517 .55

r

TABLE 2b'

In this table are shown relevant values describing the three networks
shown in Figure 10. Values for Te and Tej were rounded to integer
values. Lists of the triangles- for the three networks appear below.

".

NTWORK A NETWORK B'

1-3-10

2-8-12

-13 -14

7-9-13

8-9-14

9-13-14

1 5 3

NETWORK C

1-2-3

1-2-11 1 -2 -11

1-10-12 1-4-10

4-5-6 1-11-12

4-13-.14 6-8-9

7 -9 -13 6 -8 -14

7-9-14 6 -9 -14

8-0-14 7-8-9

9-13-14

7-9-13

,

7-13-14

8-9-13

8-9-14

8 -13 -14

9 -13 -14

0
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The networks' shown in Figurey.Ob and lOc were cdhstructed

from this first network by rearranging the lizy.so that there would

be more triangles in b than in ao and even more in c. Itboth'b and

c, the ti's are exactly the same as in a. All the relevant values

Are shown in Table 2. ,

Even a quick glance will show ithat the.trend is. clear as we

move from the random network shown in Figure 1O'a to the structured'

e
one in Figure 10c -- the sl in shown in c exhibitsclear differenti-

. ation into parts. This s a direct result of the increase in struc-

ture, as operationalized by the number of trianglel. The relation
1between number of triangles aoa.system differentiation is due to the

. ,

fact that in order to have groups, we must have'setsiof nodes which

' interact more with each other than with.other nodes outside the sets.

This would lead to an abundance of casesn which the nodes linked to

any particular node are linked to each other, which is exactly what

triangles are.

- This, then, suggests at least a partial answer to our-ques-

tion, "What do we look for?" We look for structure in,terms of dif-

feTentiated parts within the. system. These differentiated parts --

call them "groups" -- will be made up of individual elements which

have. most of their interactions with other elements .in the same groups.

The groups are one evel higher than the individuals that are members

of the groups.

We can make several points about these groups.

(1) We are using an alternative description when we refer to
a

these groups as structural units. If we focus on the individuals =kiln

up the group, we will be describing functional phenomena: which nodes

interact with which other nodes. At the group level of analysbo-'

however, we have descriptionsof structure. Thus, function at one

level becomes structure at another. This type of, alternative descrip-

.tion is consistent with the logid of complex systems.(

%
(2) This model is consiste t with the one proposed by

Herbert'Simon (1973). He suggests that multiple - leveled hieiarchical

A
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systems, where the system is made of parts, which are made of smaller

parts, and so on, are inherealy make stable than monolithic non- .

hierarchical-onii. Not only are they more stable, but-they evolve

fater and function moye-efficientry from certain points of view.

One reason for these advantages can be seen in .a structural aspect

Simon calls loose hoizontal coupling in.production systems. 'Within

. a unit, there are relatively strong connections' among the'components.

Connections between Croups, however, are of a different sort. Com-

pared to the number of intra -group links, there will be a much smalVi
. f

number of inter-group links. These "bridge" links may be made by

specialized linking components. At the higher level of groups, *many

of the microscopic details that were relevant at the individual level

become irrelevant. BicaUse of this,Aelective loss of,detailit

possible to coordinate a number of groups into a larger system than

- would be possible without a hierarchical structure: To understand

the function of thy' whole system, it thus becomes necessary to firit

examine its structure, as multiple-leveled structures demand similarly'

multiple-leveled'descri4ions.

In order to understand systems with multiple levels, we have

to examine them at sevetal leyels of analysis. The GASSICS procedure,

with its iterative looping, is set up to do just, this. Although none w

of the single steps of the'procedure include more than two levels. -

other than the whole system, the procedure, with its repetitive loops,

includes amany levels as there may be. This is how simple methods,

which by themselves cannot be used in complex explanations, are put

together in a procedure which theoretically has no limits in terms of

multiple levels.

(3) When this model is applied to communication networks,

it is consistent with the classical sociometric model that has beep' in

use since the forties. In,-the sociometric model, the groups are called

"cliques,"and,the linking components are called "liaisons" or

"bridges." Traditional sociometric methods were concerned with the

location of cliques and liaisons, and with the descriptton oftheir

function in the overall network.

r.
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. (4) Finally, this model is also consistent with an infor-

mation processing - approach. In this:approach, individual nodes would
'4
be assumed to have finite abilitiesto process information. As the

. number of nodes in a group increases, the amount of information that
.

must be processed in the coordination of the members also increases.,

Clearly, this places a limit on the size of the group. If a very

large number of nodes must be coordinated to perform a very complex

task, a hierarchical structurewillhe more efficient, in'terms o f

the amount of energy that must be expended coordinating members of .

the system, relative to the amount thlt may be devoted to achieving,

the goals of the system. ,t

Lak-

-SUMMARY

'4 In this chapter we developed the statistical tools needed

to measure deviations from random organization. This'is theosecond

step in a cycle of the GA4SICS procedure for analyzing complex systems.

This method is based on an analysis of theconstraints which

%...4ybe inferred to be operating in a.system. ile were interested here .z

in a particular kind of constraint, one which influences patterns of
. ,

interaction among the parts of the system. We showed howthis kind

of constraint could be opeiationalized by examining sets of relation-
.., ,

ships between parts in such a way as to be able to determine how much

interdependence there is between all therelationships. We showed how

to calculate the amou nt of interdependence expected in a random or
. 4

unstructured system, and then how to compare the amount observed, in a
. -.

real,system to that amount, gaining a measure of the amoung of struc-

ture beyond that expected by Chince.

We observed the implications of this kind of structuring by'

taking a random system and-rearranging the set of interrelationships

between its parts'in such a way as to increase the interdependence or
$

constraint. The higher the interdependence, the more clearlq oiganized

the system became, in terms of 0 differentiation into intermediate

level parts, which we called groups. A low-level system that is con-

strained or structured in this way is likely to be organized

I
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h erar.chi ily. The system as a whole is likely to be differentiated

into parts hich may be further differentiated into smaller parts, and t

so on. is4kind of arrangement is what we should look for if the

system is structured. Since we can easily calculate the amount of
. .

.StruCture, we can 11 whether or not we are likely to find such a

'hierarchical siren7ment. .

s concludes the second step in a cycle of the GASSICS

The -Next chapter will.discuss the third step.procedure.

*1.
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'CHAPTER EIGHT

THE IDENTIFICATION OF DIFFERENTIATED SUBUNITS

Chapter Six described methods for collecting relational

data about the elements in a complex system. This was the first step

in a cycle- of the GASSICS loop. For an applied example, we used the

case of communication networks in large 10tiel, systems., Chapter Seven

developed the statistics needed to make the'structural measurements

of the second step in the GASSICS loop. in this chapter we present

an algorithm for performing the third step in the loop -- the identi-
J

fication of differentiated subunits in the. system.

We begin with a

on toka presentation of a

this step in the analysis.

general discussion of.the problem and move

imore complete specif tibn of the goals of

Fbllowing this, we do cribs an algorithm

\that will produce the desired results. The last s ction presents a'

specific implementation of this algorithe which his been used to study

atruCturing in human communication networks.

INTRODUCTION

In this chapter we.will be discusiing-an algorithm for per-,

forming a certain type of analysis. The thiid step of'the GASSICS

loop is to identify differentiated subunits in the system.

,Terminology

In keeping with the distinctions made in Chapter Six, we

use different terms to refiti to the data than the ones we use to

roferto 4o...system. The analytic terms that replace system, element,

and relationship are network, node, and )ink. Since this,' step of the

GASSICS p is inv011ied with an analysis of the" etwork of links be-

tween the n s, network analysis. To differentiate this

'type of network analysis frbm others, and to remind ourselves that it

is a part of the more general GASSICS proCedure, we call it G-Network

146

15 0

1



www.manaraa.com

147

- Analysis. The use of this terminology will make ityeasier to be

specific when referring to different types of analysis and to make

it clear which phase of the GASSICS procedure we are referring to.

Goals of G-Network Analysis

The goals of G-Network Analysis (GNA) are fairly st;aight-

forwad:, to identify any existing clearly differentiated subunits in

the network. These subunits will correspond to units in the system

one level above the level of the parts whose ipateractions were de-

scribed in the first step of the GASSICS loop.

Our analysis of the implications,-of structuring in Chapter

Seven suggested that these subunits, which we called,"groups," would

be composed of sets of interacting low-leveXcarts, or nodes. The

nodes in any one group would be distinguishable from other nodes in

the network bype fact that emit of their interactions would be, with

other nodes in the same ''group. This distinction is made possible by

a difference resulting from the operation of some form of organiza-

tional constraint in the original system.

,

1. Linkage versus distance representation

It should be emphasized here that the basis for assigaMent

of nodes xto groups is pate of interconnections. Clearly, this

conceptualization demands an analytic technique which looks at the

patterns of interconnections, as actually observed, rather than some

other representation. In Chapter Two we'described several types of

"network analysis." In many of these, data based on methods that.

calculate "distances" or "similarities" among the elements of the

system were used. These distance methods may all be constrasted

with topological or linkage-based methods such as the one demanded

by the conceptualization presented here. Although some linkage -based

methods, as well as many distance-based methods, require the data to

be expressed in binary (either there is a relatioriship or there is not

one) form, the method described here does not impose this constraint.,

On the contrary, it requires relationships to-be scaled an,a continuum
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of strengths, so that stronger relathipsare represented by

stronger links. ihe strength indicators are used in many parts of

, 148

the actual analysis.

Our model is not concerned with such concepts as proZimity

or similarity or multidimensional distance, exceptas they are in-

directly' implied by the patterns of interconnection. Although these

conceks may be used in some descriptions of the system',,they, are

irrelevant to the model_pre.rnted here. With distance models, it, will

be, recalled, the original data are first transformed into a distance

or similarity matrix, which is used as the starting point for the

analyis. The "distances" (or "similarities ") used in these methods

are indirectly related to the actual behavior of tie eleients in the

system. As a result, the. distance matrixcpay be related to the raw

data in very complex ways that are ifficult to express in terms of

actual interactive behavior. In contrast, GNA, the'present method,

looks only at actual patterns of interaction among the ;embers of

the, system.

2. The classification of nodes

The analysii of structure in Chapter Seven suggested that
o

we, should look for clusters, of elements having most of their inter-

actions with other elements in theltaale clusters. The-main goal

will be to identify theie clusters or groups. f.

, (a), Non-participants and participants. Before we do this,
. . .

,howevert-we can eliminate alI elements that do not interact at all

with the rest ofthe system. We can also eliminate all elements that

ar connected in such a way that they. can only function as sources or

ik1.destinations of any information' or influence flowing hrough.

the system. These elements function as if they were outside the

system -- either parts of the environment or representatives of other

systems. -AUhoUgh they may be important as they:function in this,
4

role, they do not participate as members in the activities of thes

rest of the network. The elements eliminated are called non-pa,tijpa ts.

16)
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They include\both nodes not ligked to the rest of the network and

nodes linked only minimally. This definition will be exunded upon

in a few paragraphs'.

The remaining elements -- the participants -- will comprise

the bulkof the 465em. These Will include all the m ers of groups

"-as well as th elements working to connect the groups.

The \lassification scheme we are usinhere is shown in

/ Figure la. The first division is between participants and non-parti-

cipants. Non-participants are subdivided into the isolates and

tree nodes. There are three types of isolates Type 1, Type'2,

and Isplated

The participants are divided into group members, liaisons,

and others. The category of "linkers" includes the liaisons and

others as well as any group members who have links with members of

ottier'groupi. Those group-member linkers are often called "bridges."
4

(b) Groups: A grout") will have at least three members p

because with two it is simply a dyad, in'which there'is little chance
. .

for coordination with the rest of the network because then the

would be part of a larger group.. All the members of a group must

have ,most of their intertions within the group. There must be

some path, lying entirely within the Koup, from each member to every

other member. This insures the possibility-of communication and

coordination of all the members. Without this connectedness, the

group cannoefunction as a unit and must be iiroken down into two or

%more separate parts."

We might add further restrictions to guard against/aitur.

'tions in which a set of nodes identified as a group is really tw000r

. more groups, joined by fvsmall number of connections, either directly

oratndirecily, "`to other .groups in the set. To do this, all we have

to dois,stipulatethat no group may-be made dis-connected by the
42> A

removal of some small subset ofits members._ If the removal of a

small subset of members dauses the group to become dis - connected,, the

group should be split ,apart..

,?41 -1?

1641-

4

4

A

sr



www.manaraa.com

-3*

150

er
Figure la

-
NETWORK ROLES

.r

Group Members
. Linkers Non- Participants

.

Gtoup A: 1,2,3,4,5 Liaisons: 19,20 ' Isolate Type 1: 27
Group B: 6,7,8,9,10,11 Others:, 21 Isolate Type 2: 2424
Group C: 12,13,14,15,16,17,18 Tree Node: 22 I

Isolated Dyad: 25,264
.

I
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Figur% lb

CLASSIFICATION TREE OF NETWORK ROLES

All Elements
4

Non-part dipants

Tree Nodes Isolates

Participants

'7" 11.

1517 y'

.4

-46 )

I Liaisons Others 1(

000.0°°°°. \
:

.fib' . . 44
k

..

Isolate Tyet.1 Isolate Type 2 1 Group Members.' ;

( /
olacad. ad Bridges 4.4,Non -bridges,

. $
,

1.,

1'1The elements idthese-categories
are-generally ;Sferred to as

4 . "linkers"
ti
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This, the criteria that must

of nodes to be called a group arec

-4"r".'"'N

be satisfied in order tor a

(i) tN;here must be at least threeiembers.

(ii) Each must have most'of its linkage with.othet members
ofthe same group. Hate, amount of linkage refers to
amount of interaction rather than number of relation -
ahips. This point'is clarified in a few paragraphs

(iii) There must be some path, lying entirel''vithin the
group, from each member to each other member (this is
celled the connectedness criterion).

ThRre must be no subset Of links or nodes whiCh;-if
removed, causes the group to become 4is -connected \
(irA practice, the subset is usually emaller than ten\
pekdent of, the group -- this is called the critical
links/odes criterion).* The nodes that are removed
when tiietiiig this criterion are .examiaed,to see which
r4le they fit, (they typically become liaisons Ole group

,merbers).

(c) Participant 77 group memb &s and linkers. Parpicipantsw

are then either group members or "linkers," connecting the groups.
_

These role categories are defined by the following criteria.

152

o

(i) group member -- a node with most of its linkage with
other members of the same group.

r

liaison -- nodes which have most of the:I:linkage with
group members in general, but not with ers of aunt,

'single group?
0,

. ,

(iii)' typo other, -- nodeS which do not have most of their.
linkage with group membeksin general.

.e°

Liaisons and others are the "linkers" mentioneeabove. The

diffetencee between the tio.is that liaisons work direCtly with the ,

groups they connect -while others do not. Others can be thought ot as

*This criterion has been stated as,
(Richards, 1974)one for critical
Operationally, the same procedures
criteria, Sothey hav been stated

te
two separate criteria in the past
links and one for critical nodes.
are done when'testing the separate
as a single criterion hpre.

iel

r

4

7.
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providinglgie indirect, or multi-st4, links between groups. A

third type-orlinker i a group member which'has'connections"wfth

members of other groups. Theseodes are called "bridges." Non*-
,

bridge grodp members, bridge group members, liaisons, and others may

be compared on their patterns of connections with, groups' members:

153

Non-bridge group members have most of their linkage with
members of their'own groups and no linkage with members
of any other group.

Bridge 'group memberfhave =St of their linkage with members-
of° their -own groups and may have some linkage with members
of other groups.

Liaisons have most of their` linkage with members of groups
but laot.with the memberi of any single group.

Others have less than halt of their linkage with nembense-ur
groups. (Most of their linkage-must be with liaisons and
other others.)'

(d) Non-participants. We can provide, similar criteria

for the classification of non-participants.
,

(i) Isolate Type .1, or Unattached Isolate -- these nodes
Nave no links whatsoever.

K
(ii). Isolate Type 2, or Attached Isolate -- these nodes

have only a single link and thus canndt take part in
the tripsfer of information or influence through the
network. They may, however, function as sources of
informationoif they either are outside the system or
have links outside. the system.

(iii) Isolated Dyad -- these nodes are similar to attached
isolate pairs who are linked to eadh'Bther. In terms
of contact with the rest of the network, they fUnGition
more like Isolate Tyr Ones.

Tree Node -- sometA;es there is a chain-of isolates
where'each one isCattached to the next and only one
end is connected to the rest of the network by a con-
tact to a participant. The node at the other end 'of
the chain will have only one link and will be an at-
tached isolate. The nodes in the Chain between the
attached isolate and the,participant are.all.called

(iv)

0

1u
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Tree Nodes. If any link in the tree structure is cut,
the distal part of the cut (the part farthest from the

system. All the categories of nodes are illustrated
in Figure lb.

. /

(e)' Amount of linkage versus number of links: Several of

the criteria refer to a proportion of a node's linkage. We are refer-

ring hereto the amount of linkage, rather than the number of links./

The amount is operationalized in terms related to infractions among

the parts, where interactions art viewed as processes involving con-
,

straint.. We are interested here in the amount of constraint rather

than the number of constraining relationships. To give a specific :

examplek if the amount is operationalized as "time spent interacting"

when the network is for a communication syptem,ye would look at the

appropriate set of links in terms of what traction of the total amount
,

of time they comprise, ratherthan in
.

terae'of how many links there

'are..,e Thus, a node having ten links coUldbe a group member even if

only two of those ten links mere with members, of the group, as 1?ng

-as those two links account foi more than half of the total linkage.

For example, those two links might take four hours per week. -If the

other eight links combined total less than four hours per week, the
...

node wo d be a member of the group.

.'the goals of GNA:Are,thus to classify nodes in the net-

work into the various network roles, based pn their patternsof

interaction with each other fn4 to piovide asoptch information as

possible about the system at each Of three levelt"=- the individual a

node, the group, and-the tntire set of nodes.

, - Taken by itself, out c5 the context of the' GASSICS procel-

dure, GMA operated only at three levels. 14 the context of.tke

iarger'framework of GASSICS however
'

it may be.used to provide
'\-,?

information at.severafadditional levels. The issue is discussed,
,

,,more completely in the next'chapter.

Is,

1F' 3
.0.

/

3

V



www.manaraa.com

155

AN ALGORITHM FOR PERFORMING G-NETWORK ANALYSIS ,

So far we have seen what the goals of GNA are and Nrhat kind '
o

1/4

of data it uses:, In this section we will see how the actual analysis

is accomplished. The main tool is NEGOPY, the GNA program. In the

first part of this section we will discuss the algorithm upon which

the program is based because an understanding Of the procedures

-carried out by the program is necessary,to any potential user of the

program, in'order to know'what is happening to the data. In Part I of

the Appendix we will take up several considerations directly related

to the 1975 CDC implementation of the program, such as limits on the '

data, specific input ,requirements, and sojon. ,We will also discuss

the'various options the user has when running NEGOPY and the output

of the program*,-- what ,phe various tables,mean and how to interpret

them. Detailed information on the actual use of the program .how

to prepare control cards, error messages, and how to interpret theM,

how to "fine tune" the program, and several other miscellaneous

issues -- are discussed in Part II.
, .

I
. The point Was made earlier that GNA Ls a topological method

. .

4
.

-- it looks for specific patterns in.the data. The realization that

this is a pattern recognition problem made it possible to program a

coMputer to do,the analysis. The GNA 'program, then, is. based on a

pattern recogni n algorithm Although it uses a variety, of statis-,

tical,and,mat ticalroperations as it carries out'am analysis, it

is not based o rthematical,oratatistioal procedures; as are other

kinds, .f analyt rograma, like,for instance, factor analysis.

In addition othis difference, the GNA progrteworks with

information rom not:age but three levels of analysis at one time.

Altin GNA there not only individusl.noaes but also groups of nodes

and thew4ele systekiThe differences between this kind Of network
. %

.

analysis other types'of'analysis-swill be discussed in 4epth in

Ohapte; N e.>-We move now to a discussion of the algorithm upon which
o

the GNA program is blised.

.t

1

191)
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There,are five,steps in the analysis. First, the d a are

read in, cleaned, and organized in an orderly fashion. Secon

4,

j

INt

4

iterative operation that makes the actual pattern recognition part

'possible is perfOrmed. In the third stage, the,paaern recognition

algorithm is carried out. Here, pimps are tentitively.identified.

In the fourth,atike,'the strict: criteria for,the various,rOladefi-

nitions are applied and the tentative solution produced earlier is

tested and made exact. 'The resuits,of the analysis are printed out in

the form of various tables and charts in the fifth and final stage.

In the following section, we will be concerned only with the actual

'comPutati6Mal Parts'Of the'aaalYsis. :Thus, we will:cover only the

second, third, and fourth stages here. The other stages,are covered

in Part I, where NEGOPY; theactual computer program, iso
described.,

The Classification of Non-participants

Before beginning the group detection routines, all non-
.

participmats art identified and classified in the appropriate May.'

Unattached isolates (Isolates Type 1) are located first. These are

the nodes with no links whatsoever. Isolated dyads and attached

isolates (Isolates Type 2) are identified next. These nodes all eve

exactly one, link.

The hext"step is to_ identify, tree nodes. If links to

attached isolates are igno ed, some trlf nodes will be left with

day one link. These are -step tree nodes. If links with one -step

tree nodes are als6 ignored, two-step tree nodes will belt only

ones having one link. This process continues until all tree nodes

are identified. The process is shown in Figure 2.

The Algorithm Which Identifies Groups

Tha,,major task to be accOmptished in this part of the anal-
.

psis is to identify the groups. We have data describing tht relation-

shiPs between the individual nodes. If we can represent the data in

. the right way, it will be easy to "see" the groups. The representation*:

C,
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a. Figure 2

THE IDENTIFICATION OF NON-PARTICIPANTS.

.1'

157_

2a shows a'part of a netwcrk.,'Node 11 is an unattached
isolate; 10 and 7 are attached isolates; 8,and 9 are tree nodes,'and
the others are group members. None of tfie,nodes have been classified
in 2a. In 2b node 11, the unattached isolate, has been identified by
the absence A any links. 7 and 10, the attached isolates, have; also
been identified by the fact'that each has, only ne link. In 2c, node

-f

9 has; -been identified as a one-step tree node: This'identification
was made because thenode has only one link, n t counting links, to
.isolates. In 24, node 8 has'been identified as a two-step tree node.
8 has only one link, not counting links to already identified non-I
participans.

r414,11
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. we would.like to have would' be one in which the members of each group

as "close" to other members of the same group and "far" from the

members of other groups. When we would just "look" for clusters

--Aroups -- sets of nodes having most of their linkage to other

nodes in the same groups. This'will be a graphical, representation

of the data -- nodes will be "moved around" until their-locations,

relative to other nodes, can be used to );ecide the way they fit into

the network.

1. The vector averaging procesd

The first in the identification of groups is to re-
-.,

arrange the data s¢ that the groups become visible; the. second is to

Iidentify the groups. The way the first step is accomplished can be

understood with the following analogy. Imagine the nodes to be like

billiard balls scattered about in space.' Imagine there to be rubber /

bands connecting the balls corresponding to nodes with links between
)

them. Imagine there to be springs between ballOiiimpondlEito A

nodes that do not have links between them. The rubber bands will act

to pull'the balls,conne;Wed.to each Other closer to each other, while
-

the springs will push the balls not connected to each other apart.

from each other.' If we hook up the rubber s and springs and

o release the balls, they will rearrange themselves so that the balls

corresponding to nodes with links eachsotheryill be close to eachr

other, while the balls correspondin to nodes that ale not linked to

each other will be pushed away from ch other. This example is

shown in Figure 3. 1,

We could reline thisfte4Onigue,by using heavier rubber bands
. )

to represent the links that occdr'mere often,or that are more important.

Since our.objedtive here is to make it easier to identify groups, we

could sake the process operate even better ff,we could make the

rubber bands for

kinds ef

thin-group links heavier than'the ones for other

In order to do thip., we need some indicator that tells

us which links look like within-group links.

rt
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I Figure 3

THE "BALLS AND BANDS" MODEL

159

This figure illustrates the billiard 'ball and rubber baAd
model described in the test. The network shown has two groups of
three nodes each. The three drawings represent three successive
increments of time, as the nodes move farther and fartherrin,response

0, to, the, forces exerted by' the rubber hands.

The original position of'the ball's illbihown by the shaded
circles in the to drawing. Movement of balls during each time
increment is.shown by the dotted arrows in the three drawings. The
scale was changed in going from the first to the second to the third
drawing in order to show smaller and smaller regions in space as
occupying the same sized area in the draitings. The regionof.the
top drawing shown in the middle one is indicated by the dotted box
in the top. Similajly, the area of the bottom drawing is shown by
the dotted box in the middle one.

e
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If two nodes arein the same group, they are likely to hakre

many links to the same nodes. There is likely to be a high number of

shared links, or tworstep links, between this pair of nodes. If they

are not in the same group, they are not likelwo interaniftwith the

same nodes and there are therefore not likely to be many two -step

links between the nodes. Thus, the numbero two -step links is used

by the program as an indicator of the proba y that the link is

a within-group link.

-

Now, it is difficult to represent large numbers of points in

multi-dimensional spaceA,' 'It-takes a lot` of information to do so, and it is

fairly difficult tb move objects in this kind of space. Extensive experi-

mentation with read data, however, showed that it was not necessary to

use a multi-dimensional representation for this analysis; a single

line segment was sufficient. This kind of reduction in complexity

of representatipn both reddced the amount of information needed to

perform the analysis and made the analysis itself become easier to do.
/7.

"I
The analysis is performed asfollows: -nodes are'scattered

at unit points. along a linesegment N units long, where N is the num-

ber of nodes. We then treat each l4.nk from, say, node A'to node B
,

as a vector, starting at A and pointing at B. We take all the vectors

for each node and compute the average, weighting the individual
,

vectors for strength of 'the link andvrobability that the link is a

.within -group link. We then get a single point for each individual

node, that point being the,mean o that node's vectors. This is

1--illustrated in Figure 4. After a lithe means have-been computpd,

each node is moved to the point indicated by its mean.

After this process has bee complezed, nodes with links to

ach otherwill be closer to each han they were before. They

w 11 not, however, be as'closeas the uld be. This factis due to
It .

way nodes are scattered initially,,and also because of the statis-
t

tical properties, ofthe mean. For this reason, the entire process is

repeated, using the new locations instead of the original,positrons

used for the first set of calculations. A plot' showing. bow the nodes
1

.

move cin successive iterations is shown in Figure 5. Between each set

4

S
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.11

Figure 4

THE VECTOR AVERAGING PROCESS

In A above, is shown a hypotheticaUttwork, consisting of
\wogroups, each of which has'three memers; The vector averaging
process is illustrated in B on the next page.

The first set of three "arrows" shows the process for Node'
#1. On the top is the vector for thelitik from fl to #2. Below that
is the vector for the link to #6. ,

)
/

, The solid circle on the third line is the starting point
'foi" Node #1. The mean for #1 is calculated, by adding together the
two vectors -- to gond #6. The'locition of Node #1 is also added."'
ThedSUm is then 2 + + 1 - 9. The mean is simply 9/3 = 3. Node #1
is moved to the mean, the point shoWn as an open circle on the third
line.

The next five sets of lines show the process f,Or nodes 2,
3, 4, 5, aid 6, respectively.

1
.

4r
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ITERATIVE PROCESS OF VECTOR AVERAGING

c

164.°

I. MEANS

1
MEANS

.

} MEANS

ICE

This diagram shows how the iterative process of vector
averaging works. The first.lide shows the initial positions of the
six nodes. The second shows what..the'means could look like. Moving
from the secon to,.the third lines, the scale has been expanded so ...

that the nodes range over the entire len0b-ofthe continuum. The
_fourth and six h lines show the second and third sets of means, while
th expanded. versions are shown on the -fifth and seventh lines. (Note
t t the values shown are not the actual values that would be obtained
f rithis particular network; they are intended merely to illustrate,
how the process might typically. look.)

r

r
3
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of calculations it is necessary t expand the scale of the continuum

so that the spread or range which occupied by the nodes remains N

units long. If,this is not done, the points will move closer and

clos5r_to each other, finally, collapsing on a single spot. This is

the "scale expansioi" referred, to in Figure 5.

The formula used for calculating a node's mean is shown

'here<

to I

M' -
(wfi. Si)

where wfi is the two- step weighting fantbr described above-(the number

of two-step links connecting the nodes plus one); Si is a ratio-level

indicator ,of the strength of the link; and M, is the old mean of the

uode.to whom the link goes. The summation As done as i goes from 1

to t, where t is the number of links that the node whose

mean we are calculating has. .

In the development of this algorithm, different numbers of I
iterationsolifferent ways of:varying relatilk contributions of\sifiss,

S 's,Land M 's, and diffilrent way ik of assigning the original M 's were,

tried. Iwgeneral, four to six iterations seemed to be sufficient for

any data set that wai-examined. If nodes are given "subject numbers"

running from 1 to Ni where N is the number of nodes, and these subject

numbers are used as the fi t approximation for the'M 'a,sthe process

seems to work well for all types of data: In actual tests, when

different subject numbers were assigned to nodes, the solution ob-

tained-was identical to the first solution, which indicates that the

'process is not terribly, sensitive to the original positions.

the wf 's and S 's are givegrequal weight, although this has not been

tested extensively. The computer program allows the effects of the

wfi's. to be varied by the use of an additional weighting faltor W2S,

which is shown in the equation below. When itis set to one, both

the wfi's and the Si's have equal influence.

E((W2Swfi).SiMi) 4
0 0 E((W2Swfi)Si)

44
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The result of the application of this process is a continuum,

N units long,with a Scattering of nodes long its length. Because, of

the way it was obtained, the continuum cannot be directly interpreted v-

in terms of the behavior of the individual nodes in the network. It

is impossible to determine the relation between specific raw data and

the final results for any given node in complex iterative procedures

like this one. Tyre-/ationship is statist ais and must, be inter-

pretea in statistical terms: the nodes that aA close to each'other

on the continuum are likely to be somehow "close" in the network.

That is, they probably are in the same group. , It is impossible to

say 'anything specific about whether or not the nodes are linked or

how many two-step links there are connecting the nodes. Iv sample

network, together with the continuum that might result, is shown in

Figure 6. This continuum is used as the input to the next.stage of

the analysis, in which tentative boundaries for groups are drawn.

2. Drawing the tentAtive-boundaries

For anthliman observer, even a casual glance at Figure 4

will be enough to suggest that, there are three clusters of nodes. The
.

&= computer, however, must be "ttIld" what a cluster looks like and how

to "look".for one. People probably identify a cluster as an a

which there are many nodes surrounded by areas in-which there are

fewer nodes. -Ads is essentially what we have the computer "look °
.a,for."

We will need a plot oe'the "density" of nodes along the

continuum. InOrder to obtain'such a plot, we construct a "window"

and move it along the continuum, counting the number of nodes visible

througyhe window at each pointi.This is shown at the top.of Fighre

5. The optimUM size of the window; determined 159 experimentation;

appears, to be about "two units on in N unit line. Windows., smaller than

this introduce spurious statistical informatiOn'? while with windN"ows-77\
larger than thin group boupdarAtend to blur and merge into indis-.
0
tinction. This is shown in-piguile5, where density plOts appear for

windows of varying:widths. The result Of moving the window down. the

4
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Figure 6

7

A NETWORK AND THE CONTINUUM FOR THE NETWORK

.

167

,The top. of this figure shows a hypothetical network composed'
of twenty nodes. GroUp boundaries are indicated.by the dashed lines.

1

u. The bottom shows what the final continuum eight 19ok like
for the network shaft in the top. Again, the grimp boundaries have
been Indicated by dashed'lines.
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.1vidual ode.

the one shown
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ii:e,a list of'densities, with one value-for each indi-
A`Such'-a list'6uld be represent ed as a'.-bar graph like

, .

in .Figlire ".7

7 With thi tepresentation,groups will look like mounds, with
, .

boundaries betw n groupsbSinglindicated byqow points. Although it
t .

seems as, though idrepresentation would be adequate, there arose

problemt.whiCh ad to:an 1Mprovement over this simple plot. Alichough

.4 the problems will bel,dfscuased here, the improvement will: instead

of just counting the numiOr of nodes visible through the window, two

numbers are counted -- the numbevisible on the right half of the.

'Window and the number visible on the left'halt. When constructing the
4

.

.

1bar graph, the number visible on'the right half is plotted above the

'horizontal while the number visible on the left half is plotted below
7.

the horizontal. The result is,shown at the bottom of Figure 7.
. .,

The final step in thlie stage is to have ,the computer "draw"

lines around the groups. This isaone byjocating spots at which

. there is a largeLonangein density as We,move froccone point on the
continuum to the next. If we ount .the -number of non-overlapping

points and divide by the n er ofilerlapping points for each pairum(
of adjacent nodef on Pzi final liar plot, we will have a fairly sensi-

tive indicator of group. continuity. This .is shown in,FigureH. High;
/

values for this ratio will indicate that there la a large change as- e

move from one node to the text. Low values, on the otherhand, will-,

indicate that there is only a small change. If we choose a 'cutting'

point and instrut the- computer to "draw" a line whenever tilratio

goes abbve the cutting point, we will have'."told" the computer how-to

"draW" the boundaries arOupt groups.. If-the value of the cutting

point is variable, wecan alter the sensitiyity of 'the group spotting-
. '

routine in either direction. With a window of two units, a cutting,

41.

point of 1.0' appearleto be optimUM'for most networks. 'Different

values, along with', the resUlts,
t are shown An. Figure 8.-

4
4

There is one finahtasp ect of the process of scanningthe con-
.

I

tindum that is important here: "scan mode." The computer begins at
one end of the continuum and

works through thellotations of every'liode

4
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Figure l
l7

4
.

SH0JI THE OPERATION OP THEWINDOW
. ,

AND THr CONSTRUCTURING'OF THE DENSITY PLOT
= 4

r .

,This figure sho
Imes the continuum ahovn
shown, centered -successiv

. , -. . i

i, - The three bar aphs in the'middleshow the effects of difl-
ferentiy sized window

..

4

0 \ '
the dendity plot is de. The example

gyre 6, 'In thetop rt,-the window is
on the first eight es.

. -

I

On the'bottom is shoWzi the refined- veriit* of the plot, with
numbers of nodes,visible'to-the right off the Center.of.the
plotted above the horizontal and nUmbers visible on Fhe'lef of the
windOw plotted below the horizontal..
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Thezfatios are plotted. in the, grfph in the Mid411e of the

. The three dotte41.ines show the three different outtin5 points.-
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. Bela/ the ratio 'plot, the original continOum is shown-three. .
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Figure 8.

re .CUTTING POIIT5 ANA 7IHE BOUNDARY-DRAWING PROCESS'

%

This figure illustrates.the'bOunary-d awing % pro4ess. The .

density plot on the bottom of Figutes7 is sh on the top of itl--.4rs.
-figure. 'he table below tge'plot shows the n er of bverlapiAng
points, the number of non-overlapping pointsL,And the ratio .of shei
two ambers fof eeClisucceseiVe pals of bars gin the-bar plot.,

I

Ielle

' times.' shoits,theieffect of a/high cutting point, while the %-

second and (third ones shOW'the results for moderate and low values'of .

the cutting '
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along the continu

any point of the sc

4 -

There are two "modes" the computer.can be in at

One is "group mode" and the other is "non-group

mode." Whedlthe'noides between a set of the lines drawn by the com-

puter satisfy a set of criteria, the complipt is in "group mode."

This will generally be the case Ain the' densities in the region of

the nodes arshigh. When the .densityl.s loW, the rcompgter scans in
.1

"non -group mode." Usually, the mode will be non-group between groups

areas along the continuum in which the gensity.4 nodes ih very

low. Although the'compgter can only Switchliodes when lines are

trawn', dt does not necessarily switch every time a line is drawn.

Thenode.s located between a plir of lines, in which the scan mode was

174

"gtoup" are tentatively identified ib a group' The other nodei are

classifiek later on the basis of their ,intelaction patterns with,

other nodei. a
)

This concludes the approximate phase of the, analysis, The
.

..
result of this stage is a.list of tentative groups of nodes. Mai'

. .
t

next part of the' analysis involves the testing of thief tentative. solu-:'
," b -

tiolOand any Alteration,that may have to be done to "clean it up.*

3. Using the criteria for an exact solution

This part of the 'analysis' can be divided into two parts:-
,

La the first, individual nodes are tested to see if they Let the

relevant criteria for their role in the network. If they Jtt) not,
.

the appropriate changes are made. In the

testedLfor the criteria that are relevant.

priate ChangsNare Made if necessary. We

.gscond,mholegroups are

at that level. Again, appro=

begin with'the individual

testing, which is very simple. 1

(a) Individual testing. First, nodes not in gfbups are

tested to see. if they meet the crttrion for either liaison or grout)

embefship in any group. If any individual node does meet the cri-

terion, it is reclassified on thatbasis. 4114node fails both

tests, it is labelled as "type other,"

sat

,
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Second, members of groups are tested to see if they meet.
A

the criterion 4or group membership. Again, if the criterion is not

t the appropriate changes are made)

! changesBecause changes made at any poi& i n time can affect ,the
roles, other nodes who were tested earlier, the tes s ale applied

42,

twice to make sure that; the fipil classification wil be consistent

with itself.

I
Sb) Group testing. In this section, we change our level of

analysis to whole groups, rather than.separate nodes. The criteria

to be tested in this part are the cOnnectiveneSs and critical link/

node criteria. Since the information generated in the testing oft the

connectiveness criterion,is necessary in the testing of the other one,

175

it Will bejimered first. .
,..

.
,:. ...

. ', (J)- Formingithe distance matrix -= The basic,device'uied
, ..,

in the testing of 'these criteria is the distance matrix,
..-

. which is constricted for etch group.' In thii n -by -n matrix
.

(n is the. number of Oembersdan..the sioup),the entry-in1

. 'row i, column j gives the'sumborof steps needed to get

from node J. .to node j in the grouOV,If there is some finite"

' number in 4lach,element oi ale matrix, the group Will be
,..

`,....._ coneotd. This means,that there will be some path
o
frail

,.

each node in the group to every other node'in the group.

.-i'l The longisf.any path could be is n-1 steps. A swathe net-
..

ti work; tqgether with its distance matrix, is shown in Figure 9'.

I The distance matrix is constructed as follow --.- A-Matrix

-his constructed in which there is a.row and a col for each

nottlein. the gioup. All the elebents are initial ed to

ierd. WEenever there' is a lyak from node i to node j, a.
A* 91" is entered in row i, column j. If the link is recipro;

...cated, as"1" is also entered in row j, column i. r'

', A Boolean logic operation which is enalgoous to raising

the.matrix to successively higher and higher powers. is then

.1& I °

o

e
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Figure 9

A DISTANCE MATRIX

176

At the top of Figure 9 is shown a hypothetical eight Alode--
network. The matrix directly below the network is a binary version
of the network. In this eatrix, each node has a row and a column.
The entry of the matrix is 1 if(nodt i,is linked to node j.

The second matr is the distance matrix for the same net -
'Vrork, The entry in;the i, element of the matrix is the number of
links in the shortest path from node i to node j.

ti
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performed. Instead of setting the i,j entry in
,

the product

matrix to the w+ ofthe cross product of the ith row and

the jth-column, however, the first power,,,on 00.ch,this varue

becomes non-zero is used. ,

The raising of the matrix to:higher Powers is stopped .

when one of two copditions..obtaii either: (a) all off-7 .,

diagonal elements become non-zero,-which implies the -group '

(

is crill6ted; or (b) when going frost any powerik to the next -\

iower k+1, no entries change value, which implies the group

178

is not connected at level k and will ver be connected at

any level. - g
.

..
.

.

- .,
If the group'ienot connected, it is split into a connected

pariand all the rest. --tiCh-Of-ihe two ,parts is.ilienteated':
'as

ea a separate group, and subjected to all the tests that any

group must undergo: ..,,-,. 14\
i ;'yn% :.

(ii) Testing for critical nodes. - /Li this point there
$ , .

is only the critical links/nodes criterion remaining to be
. .

tested. This criterion serves as a check against situations

,like those shown in the bottom half of Figure40, where two

, groups have been mistakenly identified as one. This situa-

tion isygeneralized to include situatilAs in which there are
at .11

any nUmberAf multiple groups, co ected in some relatively.''

T'minimal yay, which we wish to !lei rate into distinct groups:.
,.

Theoccurrence of these%Confusions is a result ofthe inele-

gance of the-approximate techniques used in the fast half of t

tithe analysis. For analytic purposes, twas practical to

t(mbine both critical- links and, nodes into a single rule which'

isays'that no subset of soli arbitrary size may be removed''

',-''' from a group-end cause the group to become disconnected. If
, ,

there is such a subset, the group will be seen to Le "really"

two or morp.groups. As a result of this combination, whenever'

two groups are joined by lo. bridge link (a link between members

.,f- different gr)a), one' of the nodes ofsthis link will ille

1

0

4

1

IP+

A
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Figure 10

THE DISTANCE MATRIX AND CRITICAL NODES.

ti
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'.

( On the upper left-hand corner of this fi is shown a
hypothetical nine -member'*work. To the right of this, is the distance
matrix for that. network. The rlightitiost column of the matrix contains

. ' the means of`the rows of the matrix. The values in this column are I

thus the meaneumber of steps it takes that node to reach all other
nodes.,, The overall mean forthe group, together with thistendard
deviation .of the distribution of. means, is shown below the.matrix:.

..

r
a

The network in the bottom left-hand corner` is an .example of,
-,y the kind of situation that occurs when two or more groups are identi-,,

fist-as'i single group., Clearly, -node 51,VI.s a liaison between the=two
groups. The middle matriS on the right lf pP the page is the

. ,-

fietance matTilifor this, groUp. Note the relatively high standard
,deviation for this,grour, compared to the one above it.

,,

a .z.-,-: .- '

,,.The third matrix was tonstructed after removing node 5.. Note '.
thatAthere are go'Valuee for many of the elements, indicating that-the

.

A*......,i,,, grouffs no lonferConnected. The ,means shoWn for this bottom matrix`

Iare
the values that would'be obtained if thesroup' were split in twa,\

and the means for each group calculated separately.

-

t

4
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identified as a liaison That node will later be tested fof

the criterion of group membership and if ieliasses, will be

returned to one of the groups.

The problem has thus been reduce to one of identifying

any critical nodes which may existfin a group. If there is

'one, it, will be the node with the lowest average distance

. from all other nodes. This i$ because all paths from nodes

in either half of the group to the other half must go through

the critical -node. The average distance from any node to

all the other nodes is given by the average of all theentries

in that node's row in the distance matrix. This is illus- 7
trated in Figure 10. If there is a set of critical nodes,

they will be the nodes with the smallest row means.

The fact that critical nodes have lower row means than

the other members suggests that there must be some variation

in the row means if there are any critical nodes. We can

take advantage of this fact if we only look for critical

nodes when there is. some variance. It turns out that this

leads to a large savings in terms of computation time. This

is because of the way we test for critical nodes.

To check a node to see if it is critical, we remove it

from the group and re-calculate the distance matrix. If, as

a result of the removal, the group becomes disconnected, we

have found a critical node. If the group is still connected,

we try the next candidate,-- the node which, of all the re-

maining nodes, has the smallest row mean. We will stop this

process,after taking out some percentage of the original

group members (usually ten percent'ip enough to "catch" all

the critical nodes) if the grbup continues' to remain con-

nected.
*

If this happenes, we put all the re oved nodes back.

into the group..

It is easy to see that there is eonsiderable fort in-

volved'in searching for critical nodes. This is wh the

'heuristic device of checking the variance of the row means is

19;
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so important. In every network that has been examined so 41.

far, this heuristic has worked correctly. That is, it did

not prevent any critical nodes from beiiig found. Similarly,

the approach of looking, t nodes with the lowest row means

always finds the critical nodes. The optimum value to use

as a cutting point for the variance test seems to-be about

0.3. Whenever the standard deviation of the row means exceeds'

this value, there is likely to be a critical node. Whenever

the standard deviation is less than this value, there is not.

After all groups have passed these tests, the obtainet

classification of nodes to groups and other roles will be

exact. At this point, various indices may be calculated and

the results tabled in any convenient manner. A flow chart of

the algorithm is shown in Figure 11.

4

tr



www.manaraa.com

GET
NEXT

A.
NODE

READ DATA
INITIALIZE

LOCATE

NoNPARTICIPANTS

COMPUTE MEANS

1

CONSTRUCT DENSITY PLOT

DRAW BOUNDARIES

CORRECT NO MORE NODES

Figure 11

'FLOWCHART FOR THE
GNA ALGORITHM

4

183

CHANOE

CLASSIFICATION

CONNECTED T CONNECTED

REMOVE
CRITICAL

NODE

?CST
FOR

C RITIC AL
Nooes

NO
CRITICAL
NODES

MO
MORE
GROUPS

SPLIT 6RouP

TEST INDIVIDUAL

-C,LASSIFICATION

'

DISPLAY RESULTS



www.manaraa.com

CHAPTER NINE

4 THE SYSTEMS APPROACH,,GASSICS, GNA

4

I

6

Fy

The,analytic method introduced here can be viewed from, three

levels of specificity. First we have a general systems approach,

which specifies,both some general characteristics of the objgcts we

are interested in and the processes by.which we become informed about

those characteristics. Second we have GASSICS analytic proce-

dure which specifies what kinds of data are needed and what,kinds of

operations outhtto be hone on the data; and finally we have the

three stages of the GASSICS procedure, in which explicit and complete

operationalizations are specified.

The intent of this chapter is to examine the ialytic method

presented in Part Three at the three levels of specificity and mess),

both what is includedat each level and howthe levels relate to one

another. Then we will relate several different aspeCts'of the approach

described here to other analytic methods. 'A large part of the dis-

cussion here will be concerned with the/Comparisons of'specictc tech-
/

niques of analysis in the context of the more general,GASSICS

procedure.

THREE LEVELS OF SPECIFICITY

In this section we sh what is included at each laltnd

how the levels are related to ne another. w 4

'The General Systems Approach,

At the lowest level of specificity we have a'concein,for

batlit. fundamental isiues: What are we studying? -How 4o the pro-
/

,

ceases involved in "gain g an understanding" work? We started the

explication in Chapter ree with an analysis ,of tha.form ofsiistenis.

There we outlined the model-we use to orAnize'oOr-ideas %-

about structure.

184
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The central concepts included:

- inter ctions, viewed as constraint;-
-.levels, as concepts of description and thus distinction;
- emergent versus additive properties; and

0 - logical restrictions on interactions between systems.

When we combined these ideas with the processes of observation and

description, weinbtaineg a general firework for approaching complex

syste ms.

This general framework suggests that we respect the multiple-
.

leveled complexity of systems by app'roaching them in ways that do not

oversimplify them. That is, research methods should be designed to

work in situations involving multiple, rathet than single, levels.

Furthermore, the framework suggests that the most fruitful

places to look for an understanding of emergent behaviors.will be in

the relations between levels of the system. Again, this is a multiple-
,

leveled approach.

Much previous communication research has been criticized on

the grounds that 'follow.

(1) It has a npsychologics1 bias." Since the unit of

C

response is the individual person, the person bas been

the unit of analysis in most communication. research.

This approach .completely ignores all system effects,
4

1 which can only be seen in the larger'system. ,Not only°

are system effects ignored, but also the very existence

of the system is not considered. It 1.s as if the con-
.

cept of system'were'completely foreig4 tolpeople work-

ing in the field (pee Rogers,_19'75). A

While c. 'ication is characterized as a proceis,
,

most communication research is not process,.oriented.

Dieendent variables are isolated and measured at one

point in time. Most of the variables that have been

studied are effects variables. This approach, then,
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effectively treats communication as a "black box" which

Is studied only indirectly, by analysis of its effects&

The conceptualizitions and'operationalization used in

most communication research demands one-way causal

relationships. There are independent variables (causes).

and dependent variables (effects). This is, of course,

the -ciassical'analytic approach, which denies the

existence of Mutual causal loops. Such loops do not

fit into the model either conceptually or operationally.

The general systems approach, as it is presented heie, an-

swers these objections.

k

(1)' There is no psychological bias, because systems are

viewed both conceptually and operationally'as having

multiple levels. Although analysis may be at tha same

level from which the data are collected, it can also

be at°several different' levels. Thus, we collect data

describi4g behaviors of individual persons and make

siaements about the whole system and groups of people

workin.ltogether% as well as about the individual.

people. When speaking of the gioups and other higher

level units, we speak of theM as unified wholes, rather

than as collections of individuals. That is, we speak

of the 'properties of the, higher level units as units,

rather than the properties of the individuals making

up, the units.

(2) in a multiple-leveled systems approach, any given

phenomenon will look different when viewed from dif-

ferent level>s. At one level we may have a dynamic

behavior t1at is oblerved only as changes over time.

At a higher level, this same behavior may appear to be

a structural charaEtertstic'of the system. Thus,

process at one level becomes structure at another. The

a
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systems approach respects the processual nature cs

communication phenomena by starting with data desdrip-
.

tive of relationships -- dynamic processes which occur

across time. Again, it,is the multiple-leveled para-

digm that suggests how this is done:

'(3) The systems approach does not divide phenomena into

discrete 'causes and effects. Indeed, some "variables"

may function as both "causes" and "effects" when they

are parts of mutItl causal loops. There is a whole

set of systems concepts that have been developed

explicitly for these situations. These concepts, in-

cluding both positive and negative feedback, are-the

basis for the science of-control -- cybernetics.

Although the ideas of cybernetics are not discussed

in this dissertatiori, they are compatible with the ap-

proach outlined here.

The Second Levelof Specificity: The GASSICS Progedure '

In Chapters Four and five we discussed the implications

of there beilp multiple levels on the processes of- observation and

description. One conclusion we made, there was that the fiist step in?.

- the investigatiop'of-an unknown system would be to elucidate the

organization of the system --.howMany,levels are there and what is

the structure at each level. The GASSICS procedure;. outlined at, the

end of-Chapter Five and discussed in detail in the chapters of Part

Three, performs this structural analysis. Once the organization of

the system is,clarified in this way, the dynamics of the system can

be explored. Only after this entire process has been completed would

we say we undeistoodthesystem..

The,GASSICS procedure, then, is only one step in the anal-
,

ysis of systems, and GNA is/only one step in the GASSICS procedure.

The GASSICS procedure is an iterative loop that makes

availableAformation about the organization of the system at multiple

levels. Becfuse,of the differences between levels and the relationships

,

./

A

..
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between phenomena at different levels, the,procedure progresses one

level at a time. The complete application of, the procedure, with one .

cycle for each higher level, will.be a multiple-level analysis. How-

ever, during any single cycle of the loop, a maximum of two levels

. 'will be under consideration.

The key idea of the GASSICS procedure is the repetitive

looping. Within each cycle a sequence of operations is performed.

The sequence of operations in a cycle is.ordered so that the end re-
.

sults'of the cycle are ,fed back into the beginning parts of the next

cycle. This "feeding back" process is. where the new (alternate)
.

desdriptions are formdd. It is thus the strategic move that makes it

possible to examine multiple-leveled 'systems with analytic tools that

are not unreasonably complex.

Where the adoption of a systems approach specifies a set of

conceptual "biases"/that later determine operational procedures, the

adoption of f-the GASSICS approach specifies the sequence of operations

that must be performed in the analysis. Itdoes not, hoWever, specify

how those-operations are to be performed.

The Highest Level of Specificity: The Actual Operations

At the highest level of specificity we have the actual

'operations that are performed in a loop of the GASSICS phase of system

'analysis. Several things happen when we move to this higher level of

specificity. First, as/Specificity goes up, generality goes down. In

any of the stages of the dASSICS loop.we are concerned only with a

limited subset of aspects dated to the system. The organization of

the entire analytic approach is-thus hierarchical. A parallel sort

of hierarchical problem-solving is seen in day-to-day existence. For

example, if going shopping is parallel to system analysis, driving to

the store and purchasing food might be parallel to the GASSICS proce-

dure and analysis of the dynamics of'the'system.Getting in the car,

starting pe engine, and so on, would patallel the operational proce-

dures that make up the
A

steps of GASSICS.

If we have decided to use the GASSICS approach, Fe are still

partly free to decide how to carry out the operations specified'at

0

.")

I

0



www.manaraa.com

each step. The remaining freedom is evident, for example, in the

third step -- the,identification of any differentiated units. In

Chapter,Two we discussed a number of methods which might seem suit-

able for this purpose, Given that there were already a nunber of

methods available to do this type of

to develOp yet another method, as we

thl!s done?

189

analysis, it might seem perverse

did in- Chapter Eight. Why was

The other methods were judged to be not suitable for'one or

both of two reasons: either (a) the method did not fit conceptually,

or (b) it did not work well.

Rather than using a mismatch method or trying to fix one

that didn't work well, we started over. This was advantageous for

Akfferent reasons. Since we knew the restrictions we were faced with

as well as the desired analytic goals, we could start with a clear

conceptual foundation. Right al4sy a number of alternative operational .

approaches were eliminated. For example, we chose a linkage method

rather than a distance methfd. Also, knowing what we were looking for

in terms of groups, we could'design a method that would find just

exactly what we wanted, rather than deCide'that we should want what

the method produces. Thus, with GNA we look for groups with a parti-

cular set of characteristics. When other methods, such as factor

analysis, do not include these characteristics, we decide that the

method are not matched to our goals. The development of our analytic

techniques followed the formulation of conceptual goals.

The problem of getting a method that worked well was not

so'easy to solve as the problem of getting one that did what we wanted

it to do. One thing that helped enormously was having pre-defined

goals -- this gave us
4
a standard` to use in judging the efficiency of

our methods. We knew what we wanted. If the use of a method did not

produce the desired kinds of results, that method could be rejected.

If, on the other hand,.the method did wort, we knew we were on the'

right track. To show holeY this developmental process worked, we dis-
,;

cuss_chronologically the -history of the methods used in each of the

steps of the ASSICS prredure in the next section.

. 4
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THE DEVELOPMENT OF THE ANALYSIS PROCEDURES
I

Although the network analysis step of GASSICS comes last in

the loop, it was the first of the three steps to be developed into a

Sophisticated tool. Atthe time it was being developed, data gather-

ing methods were more advanced than data analysis methods, even though-

they were both primitive, compared to what we use now. The problem

of structural analysis had not even beet condered,' and it was three

or four years until the idea became useful.

G-Network Analysis: Four Breakthroughs

In late 1970 I became aware of the fact that there was no

fast, easy way to perform network analysis. The method that was used

'most for large systems was matrix manipulation. In 1970, systems hav-

ing over 200 members were considered to be large. I started to work

on a computerized algorithm that would perform the matrix reordering

task.

There were four critical breakthroughs\during the develop-

ment of the current version of the GNA algorithm. These breakthroughs

made it possible to program a computer to do the work of identifying

the groups in a very large network, They.are discussed in the next

four sub-sections:

1. The First Breakthrough: NETWOW

The earliest version of the current technique is described it

in Richards (1971). The first working computer implementation of

the method, NETWOW, did essentially what the matrix manipulators

(e.g., Weiss, Jacobson, and Seashore, etc.) were (Laing by hand
e

it

reordered the rows and columns of the adjacency-matrix so that min-
.,

zero entires clustered about the main diagonal. Although the results

were similar to those obtained by the earlier investigators, the pro-

cess by which these results were obtained was different from theones

they used.

( NETWOW;, like NEGOPY, used an iterative procedure which

treated links as vectors. In each iteration of NETWOW, means were

Calculated just as they'are Calculated in NEGOPY. In NETWOW, however,

after the means were calculated they were rank-ordered. The node with

Fs

O
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the smallest mean was 'At in row 1; the node with 'the next-smallest

mean went in row 2, and so on. This process was repeated ten or

twelve times. Although' it Seemed strange to take means of subject

numbers, the process worked. "Nodes that were linked to each other

tended to.be placed, close to-each other in the matrix. The discovery

of this simple procedure was the first breakthrough in the development

of an efficient method- for CNA..

The output of NETWOW was the reordered matrix. Groups were

identified by hand inspection.

A major problem with NETWOW was that it did not identify the

groups -- it just made them easier to spot. In the summer of-1972 I

began to developean algorithm that would actually identify the groups.

started with tbe method suggested in Richards(1971). The method

suggested there was to scan the final list-of means, looking for

points at which there were large breaks or.gaps when going from one

mean to the next. Group boundaries would be located at these breaks.

This method did not wotic. The problem seemed to bi due'to,the matrix

representation of the data.

2. The Second Breakthrough: "Continuous Matrices"

The matrix technique, obviously, uses a matrix. Each node
t

has a row and a column. Rows, and columns are discrete:, all rows and',

columns have the same "width. "* Since rows aie ordeted the same way 4

as columns, nodes can be represented as points (more correctly,

segments) along the diagonal.-" In the proceit of manipulation, which

makes groups visible, rows and columns are simultaneously permuted.

This means that their order is changed.,, Only the order changes --

the widths of ows and columns remain the same.

This isi!Where the sociometric use of matrices diverges from

the mathematical use Y In matrix manipulation, gfoups are'visible as

blocks of non-zero ele ents along the Aiaganal. This is a graphical

*The "width" is not real l/ defined, until the matrix is guephically
diSplayed. In practice the rows and columns of ink -on -paper versions
of matrices are of equal widths. This is a matter of convenience, as
the mathematical concept of amatrix is concerned only With the actual
numbers in the rows and coIuMni, and"not with the way they are written.

1
(/
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interpretation of a numerical representation of theJdata. This gfa-
.

phical interpretation,would work a lot better if the representatiOn,'

spy were altered slightly so that it would be a graphical representatian,

instead of a numerical one. The alteration required is a verysimple

one. The "location" of nodes. in the "matrix" has to be, changedifrom

L

the discrete ordinal representation of mathematical numerical matrix

style to an interval or ratio'leel representation of graphical style:

Let us make this clearer.

We will call the nuMerital mathematical matrix with rows

and columns of unit width
,

a "discrete" matrix. Ina "discrete" matrix,

'nodes are "located" at row 1 or row 2 or row 3, etc.; and never at

row 1.3 or row4#2.9 and so on. Nodes are all one unit awayfrom their

neighbors. "Locationfl'is,ordinal only, and order is discrete, ;

In the other kind of matrix this is not the case. Czhl

this other situation a "continuous" matrix. 14 is not,really a

regUlar matrix, but the analogy works. IR atocontlnuOps" matrix,

it is as if"the rows and columns can have varying i'widths." Thus

therr can be s at 1..0, 1.2, 1.3, 6.7,cand any other place along:
-

a continuUm; wo nodes are-very close together, they can be put
.

,.

very close together. In the '"discrete" _matrix, they' mull' always 4be
. , A e

at least one unit apart. Location, in a;continucke matrix is an
',.,

interval:value. Although locations can be r ced too teters-, ding

so throws away informatiop. A "continuous" rix is-shown in

comparison with a."!discrete" one in Figure 1:

There are at least two iMportafit differences that result/

,:from,the shift from "discreteto "continuous." The first is the

efficiency of tile rearranging process, which used t6 be_called -the
. ,

!'reordering" process.- The NETWOW program used a "discrete" matrix.

Means were Calculated in much.the same way thatthey ate- calculated

in the version of GNA described in Chapter 8. In order\to locate the
,

-nodes in the matrix after the calculation,%the means were rank-ordered

and nodes assigned to rows and columnson the basia of 'their ranking.

The next round Of calculations Ws done using the 'rar& orders -- the '4-

new row and column numbers (see 'Richards, 1971). t'

1

.
4.
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Figure 1

In Ikabove, a hypothetical networkwith three groups is
shown. 1B on the next page shows a "discfete" binary adjacency matrix
for the network in LA. Note that the groups are,visible as clusters
about the diagonal.

1C, on the bottom of the next page, shows a "continous matrix"
that might be the result of rearranging the rows and columns of the
"discrete" matrix in IL Nqte that in going from B to C, only the _

"widths" of columns and rows has changed. In this "continous" version,
groups are clearly visible as dense clustevs along the "diagonal" of. '

the "matrix:"

The "diagonal" of the "continuous" matrix is projected onp6
their segment shown in 1D, below C. "'This line segment becomes the
"c uue spoken of'in the.!text.

(
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In the "continuous" representation, nodes are not assigned,.

to.discrete rows and columns, but rather to infinitely small points

that can be anywhere on a dontinuum. This is the crucial difference.

With the "discrete" matrix,..a lot of information is 'thrown away with

each.rank-ordering, as actual numbers are replaced by ordinal ranks.

With the "continuous" form, there is no rank-ofdering. Nodes are

"moved" to the points indicated by their means, rather ithan the points

indicated by the ranks of their means. As a.result, the additional

information is kept and used. This makes the whole rearranging pro-

cess work,much faster -- converging to a relatively stable configura-

tion in four iterations instead of ten or twelve. This difference in

efficiency is directly dug to the s 'iift from "discrete" to "continuous."

The second difference resultin from the shift is in the

"readability" of the final representation,' which can also be seen in

Figure 1. In B'is shown a "discrete" matrix for a sample network.

The "matrix" shown in C is a "continuous" one. Because rows and

columns all,have to be exactly one unit wide in the "discrete" version

of.B, it is much harder to pee the groups there than in the "continuous"

version of C. This is the second. difference due to the shift from

discrete" to';continuous." This shift was the second hreakthrough;-

it made it possible to begin, work on the algorithm that would actually

identify the groups.

It is very important to keep one thing about these "continuous

matrices" clear: the "location" of nodes in these "matrices"' is really

quite meaningless as a description of the system. Because of the

iterative procedure which is used to obtain the final "locations," it

is not possible to say exactly what the relation between original data

and final-result is.' The final "location" is, however, a valuable

,heuristic that, when properly interpreted, makes the task of delineat-

ing groups much easier than it would otherwise be. In the version'

of the GNA program described in Chapter 8, the "matrices" are never

fdrawn out. In fact, they don't really exist at all. They are only

used as a way of explaining how the program works with the data.

I

e
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The,most'rhat can be said about them is that they are used as clues

to give a good guess as to where the bo daries of ,the groups'lie.

3. The Third Breakthrough: The'Grou I entification Al orithm

While the first two major developments, vector averaging

and "continuous matrix"'represedtation, were fairly "Sharp:" the
,

third, the initial group detection routine, wasImich Moregradual.

I began with the idea of locating groups on the basis Of the way

nodes clustered together in the "continuous matrisx." The process of

identifying groups from the matrix is ~a process of :'digesting" the

information in the matrix. For a starting point;. it seemed to be a

good idea to look for areas in the matrix that were "densely packed"

with nodes. Operationally, it wasn't necessary to-have the whole

matrix present, qnce rows and columns were in the. same order. This

meant that a, single line segment, along which nodes, would be located,

would be sufficient. Thus, I 'started to work with:the "continuum"

described in Chapter Eight. As is shown in the bottorp Of Figure 1,

the continuum is closely related to the imaginary "continuous matrix"

shown in C. It is,-in fact, operationally equivalent to the diagonal

of that "matrix."

The task was then to locate the areas of high density alqng

the continuum. Because the computer can only considerne thing at

a time, it cannot be told to ."look at all the points on the continuum,

and pkck out the areas df high density." Instead, thd density at each

'poi -has to be calculated, and then the densities are examined.

The first step was thus to devise a measure of density. I

tried a succession of methods here. They all used a ':window," which

I would slide down the continuum. I would note the number of nodes.

visible th ugh the window at each point and use this number as an

indicator o density. ,

The-firia question i had to'deal with was how to move the

window. At how many Toints should measurements -be.madd\ Which i

, points would-be the best tq measure prom? Theraikas no logical

basis to suggest which method'should be chosen.

20c;
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odk a practical approach. I constructed a data set for

a network with a known getup structure: After computing the values

for this network's continuum, I'tried several methods of moving the
6 ,

window. This allowed me to see hbw each method worked, and_to pick .

the, best one. 'The methods that did not work included centering the

window at points one'unit apart and centering it at points one tenth

of a unit apart. In fact, all methods'that moved the window,smoothly

along the continuum were inferior to one that centered it on successive

nodes. This is the method that was adopted and the one, described in c

Chapter Eight.

Them next step was`to analyze the density plot -- the result

of the scanning of the continuum. The initial idea had been that

groups would appear as clearly identifiable "mounds" on Ole density

plot. Gaps between mounds would signal the boundaries bf groups.

Although this simple method worked in a few very clear cut cases, where

there were no links between members of groups and anyone not in their

groups, it was notdgpendable. The problem was that the window had-to

be so wide that the density would ndt drop very far between groups.

Instead of there being clean breaks, there were only slight depres-

sipns. This dis shown in Figure 2. The cause of the problem was that
,

at the end of a group; wseveral nodes ould be visible through the

window. These would be the nodes just pas"sed earlier in the group.

At the beginning of the next group several nodes woad also be

visible -- the nodes later in the group: Thus, the density would not

drop through the transition'from one group to the next.

If the width of the window was descreased, the'density would

go to zero between groups, but if would also.go to zero in the middle

of some groups. The solution to the problem was based on,the fact

that'although the number of nodes might not change when going from

one group to the next, the nodes-themselves would be different. In T,

stead of being nodes already past,, they would be nodes yet to come.

That is, when leaving group A, the nodes being counted were members

of group A, anG-wew in the left half of the window. When entering

gfbup B, the nodes being counted were members of group B, and wme in

e.
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Figure 2

DIFFERENT WAYS OF CONSTRUCTING THE DENSITY ,PLOT

19.8

In A is shown what was expected of the density. plot. Gruops
are clearly separted by 'distinct breaks in the plot.

B shows the density plot actually obtained Icy 'plotting the
number of nodes visible through' the windOw. (Compare this plot to
the one shown in Figure 7 of Chapter 8.) Note the gradual depressions
between the mounds of the plot. It is difficult to say exactly where
dne group ends and the next begins.

In C a plot obtained by counting separately the number 'of
nodes visible in each half of Ule windowis shown. Note the, extreme
clarity'of the groups, as compared to B above. Note-also the large
shifts between grcrups, as in the transitionirom Group 2 to Group 3
at points X and Y..
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the right half of the window. In the middle of the,group, visible,

nodes would all be from that group, and would be on both sides of "the'

Window: This was the basis for-the shift to the,method of separately

counting the number of nodes visible in each half of the window., The

result of this shift is shown in Figure 2 in this. chapter, and also in

FigUre 7 in Chapter Eight.

The final step in the group detection phase is to draw the
lk

actual boundaries of groups. I had originally thOught that gaps be-

tween groups would be clearly visible andyseful as indicators of

group boundaries. The problems with this assumption were already
(

discussed. It was possible, however, to take advantage of the extra

information contained in plots like the one shown in Figure 2C. Here,

it is not, only the low densities that mark group %oundaries, but also

a shift in the set of nodes being counted. This appears on the plot

as a shift from several X's below the line to several above the line.

This can be seen at yoints x and y on the plot in Figure 2C. The
/

method of drawing group boundaries described in Chapter Eight was

based On this approach. I regard the development of the group detec-

tion routine as the third breakthrough,in the work on the current GNA

algorithm.

4. The Fourth Breakthrough: The Exact Criteria
7 .

At this point I began to test the algorithm with real data.

I discovered that the "groups" the method identified were really

0quite poor guesses. For example, in many cases t 4 would be nodes

imbedded in the middle of groups when there were not connections be-

tween the node and the members of the group. In other, cases, there

would be two or three groups all lumped together into one cluster.

Sometimes, one group would appear as two or even three clusters.

1 These problems were all due to the inelegance of the method

that was used to obtain the groupings. The source of the problem
.

ds in the statistical behavior of the m an used in the vector averag-

ing process. Two entirely different se s of numbers can have the

same mean.

21
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In order to compensate for these difficulties, it was

necessary to develop some strict logical tests that would locate in-
,

correct groupings and correct them as they were found. This was the

Spur that led to what I consider to be the fourth breakthrough -- the

developkent, of both'the criteria forgroup membership and the exact

specification-of network roles.*

The analytic procedure thus has two phases -- an inexact,-

"tentative" one and an exact final one. The first phase includes

both the interative vector-averaging process and the window-scanning

density-analysis group-detection process. The second phase involves

the application of the'strict logical tests of the various criteria

for, group membership and other network roles.

The two phases cannot be used separately, since each per-

forms only part of the analysis. The first produces results which

can be used as inputs to .the second, but which are not useful for

any other purpose. The second will not work without the information
il

produced by the first. Together, the two phases make up a powerful

procedure which extracts much of the information contained in the

structure of the system being analyzed.

Data Collection Methods: All Links Are Not Equal

The development of the techniques used in the other two

steps of the GASSICS loop took entirely different path. Data

collection methods started rather crudely, with instrumental questions

like "Who do you talk with?" This simple question was soon modified

by the addition of conten qualifiers -- "Who do you talk with about

job-related matters?" Wh n it was realized that greater precision

in measurement would (hopefully) lead to better results, the questiorL

was changed from,the pimple binary we-do-or-we-do-not-talk to a

question that allowed several levels of interaction to be coded.

Thus, liespondents could indicate 'that they talked once a month or

less,, once a week or less, and so on.

1. Nominal Binary Approaches

Throughout the 60s and early 70, the additional frequency

information was used mainly to give the' investigator some extra

*See Chapter Eight...,

r.)-
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options.. Even though more than simple binary information Was avail-
.

able, most analyses were done.with 'data that had been reduced to binary

form. Inlkstigatortis Would typicalay do an analysis using only links
.

thatoccurred once
fa

week off' more, or on/.ce a day or more, and so on.

With this scheme, then, links aboVe the chosen-cutting point were

kept and links below were rejected.- All links-that were kept we

treated as if tHey had the same strength:

2. Greater Precision: Ordinal Strength Indicators

In 1973 I modified theCNA algorithm and the NEGOPY'program

\11;ki,nm

o that they would-take link strength Onto account. -Thus, the present

ersion works on the basis of amount of linkage, rather than simple

n \ber of links. With this version, for example, it would take two

links, each with a strength of 2, to be the equivalent/of one with.a

strength of 4. This approach, therefore, retains anduses the extra

information that is thrown away when the data are reduced to simple
<

binary form. 110

Extra precision was added in yet another extension of the
.14

"all links are not equal" philosophhen the algorithm and computer

program were modifiedtto consider, not one but two indicators of link

strength. The first measurement instrumenta,t6"incOrporadte this

,feature operation lied the, second indicator as:,impOrtance. In the

-anarPsit,Stage frequency and importance would be combined in some pre--,.
determinidway by,the'programto givea,single'index0of link strength.

3. .,S,t1.1121ore,PreciSion: Ratio - level Vindicators .

final-modification in. the direction of greater precision
,

was 4rsit,,used by Monge and'his colleagues at San Jose State'Univer-

sity. They replaced the discrete category system for coding frequency

of interaction with a continuous indicator: There are two vtrsions

of continuous' frequency reporting. The first.asks,"Ho many times?"

in some stax0ard time period the respondent interacts,wiih Others;

the second asks for estimates 'of total.duration of interaction --

"how many hours do you spend. in a 'typical month interacting with

1

?II
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Since'both continuous measures are direct ratio estimates
dry

of interaction time, they can be used.in analysis as they'ati, with'

no additional transformations.

At the time of this writing, none of the methods have,been
)

tested empirically for reliability, or cross-method cons stency.

.202

Structural. Indicators

The idea of structural- measures -was first conceived iftera

large number of networks had been analyzed using /the NEGOPY program.

With many datasets, the program mould not be able to break the system

down into groups, unless either weak lihks or unreciprocated links

were excluded from the analysis. (This suggest4 that k-and unreel:-

procated links are less reliable thah stronge4reci ed ones.)prflat

With many datasets; then, it wio-necessary to submit several runs be-
, ,

fore the results would be useful. t °

A

It seemed that, if a heuristic measure of_structuring would
, . . R ' .

be applied to the data before any network rune were dens, it would

.11e possible to predict whether or,not there-461d be ahy'd-ifferentia-

rion into groups. This would save a lot of time and money, as network.*
# .

analysis woi4d only be done on data that warranted the effort. This
. \ ,-

was the spur that led to the development of the structural measures.
) I

described in Chapter Seven. 4

.

It would be god to 1e able to report that the structural 4'

r r

measures have been used and-found to work as expected in a.variety of
,

0

t4.

situations. Such a report is possible, but with qualific4lens..
N,

The main limitation is that the statistics wete worked onl.x

'46*
recently (see Richard's; 1974), and programmed even,more-recently .4`"

(within the last two months). Four networks were analyzed Using this

version of the program and the measures did work-as.expected. .

One of these four datasets was run three:timesi-with suc-

cessively stricter liMits on weak and unreciprocated linits\ As More

and more of the less reliable links were deluded from analysis, the

structural measure reached higher and higher/Values, as would be

expected. It is interesting and significant to note that separate

L

N
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measures of structure -- the percentage of links explained by group
. ._

b

8

undaries and group densities--- both increased in parallel with

the structural pleasure in 'this manipulation. Therefore, the measure

41. proposed in Chapter Seven appears to work as expected; at the same
f

time that it is supported by other independent measures of the sate

general concept.

Although the GNA technique, as implemented inelhe NEGOPY '/

Y ',// program, is embedded in' the GASSICS procedure, it has not yet been

used in that context. The most complete studies o date have only

gone one loop(hrough the cycle, with the structural calculations

. coming last, rather than second. It seems that, as the structural

indicators become better understood, they will become a moreinte-

s grated part of network/syStems studies.

Finally, as the remaining theoretical and methodological

problems (discussed In Chaptet4leven)-are solved, there will be

studies done using two or three cycles of-the GASSICS loop.

In the next chapter'''we present an example of a study using
10-

one complete cycle of the GASSICS loop.

v
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PART IV: RESEARCH

CHAPTER TEN

USING G -NETWORK ANALYSIS IN RESEARCH

The goals of this chapter are to give the reader some idea

of the kinds of systems ita,t have been studied, to indicate in detail

the structural characteristics of a fairly typical network, and to

show how some researchers haVe attempted to-relate network variables

to other phenomena. We do' not attempt to test any hypotheses,. It

seems, that a familiarity. with the kinds of things that are found over

and over again in networks is necessary before theory is advanced and

tested..

Putting the description of the example network intoyie con-

text provided by the analysis of several other communication networks

enhances its value as a representative example. This particular nit-
ss

Liiork was chosen both bePause it was representative and becauSe it'was

"well-behaved." Both of these characteristics are desirable in an

_Axample.

THE ORGANIZATION OF THE CHAPTER

The rest of the chapter is divided into three sections. In

the first, several communication network analysis projects are re-
-;

vieWed in order to give some idea of the uses to which the EGOPY pro-

gram has been put. A second fUnction of the review is to give back-

ground Information about the networks, some of which are uSed in

cross-network comparisons later sections.

In the second part, a medium-sized communication network

(the-Melbourne network) is examined using the techniques described in

the chapters of Part Three'of this dissertition. An examination of

the amount-of:ptructuring of the system, using the concepts and opera-
_

tions despribed in Chapter Seven, begins the analysis. Next comes an

examination of the organization of:the system, in the terms outlined

c204
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in Chapter Eight. Here we identify the4subsystem,structure of the

network by .applying the -OA algorithm -to the data. 'the results are

then examined from a.systems poknt of view, which stresses the impor-

lance of the relationships amodg the parts at each of several levels

(of analysis.
411

An important- part of the analysis to this section is the

comparison of the results from,the Melbourne study to the results ob-

tained in several of the network 'descrihe4 in the first section. With

these comparisons it is possible to get some idea of the kinds of

patterns that-are repeated in a variety of systems,of different types

and different sizes.

The third section discusses some examples of work that has

been done in relating network variables to other phenomena. The

studies examined here are a subset of the ones used in the earlier

_comparisons.

REVIEW OF SELECTED NETWORKS,

Several networks have been studied'with the NEGOPY program
,

since it was first developed in the early 1970s. Brief desdriptions

ofsomeofthesestudiesmakeuptherestofthissectionA"*" by

the description head indicates data from the study are used in

the cross-network compari ns in the next section.

1. The Chase Studies*

Three datasets weresiathAed at different time periods, in

different. units-of Chase Manhattan Bank. Although these studies were

done mainly to provide infOrmatiou/to the manaiement'of the Bank, they

are of interest to, the scientific community at large. The results of

these studies have-not been published; hoAver, MacDonald

(1970) has written a manuscript which discusses the application of

network theory in the organizational conteXt. Some of the character-

istics of the largest of the three networks are also summarized by

Farace and Johnson (1974). In this study, persons were askedmini--T1i; '

cate how often they talked with other people in their part of the

0

r-
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COmmunication was broken'-down into three content areas: Produc-

4 tion, Ineovation, and:Main'tenance.

`Production was defined as communication related to getting '
7

the job done. This categoryowould be conceptually clqse to the tradi-
'-

4-

ideas of, I(
forafal" coMmunication: Innovation communication was

concerned with changes in-organizational procedure and new ways of

doing things. Maintenance communication is devoted to social maintenance

functions and is"conceptually similar to.the "informal" communication

often seen in the literature. '

Because of the size of-the system'(Nw973), it was felt that
4

a roster format (seehapter Six)'woald be too long. Data were there

fore gathered with open-ended recall techniques. -Because of dif
0

,,,tAes unique to die recall method (i.e., forgotten.names, failure to

re mbet'all the communication contacts, etc.), there were manydiffi-

valties with the data. The number.of isolates was high in this study'

(prob 1 at least partly dUe to the use ofothe reoll method) and the

level of reciprocatIontwas very low. None ess, e study provides

some valuable insighte to the nature of communi ation-networks in very

lage 'systems.

;

I

2. The OCD Studies* .

Tw, datasets were.-collected a year apart in the Office for

Civil Defense in the Pentagon. This study sed the same method for

data Collection that was used'in the C se Studies. tiert again,- the

Production/Innovlion/Maintenance 'Breakdown was used. The results are

reported in an-unpubXished manuscript by Berlo, Farace, Mange, Betty,

y in Farace and Johnson (1974).and Danowski 11972) summarized brie

3.' The Treasure Island Studies'

o.

w.

Working as'an Office of Naval Research contractor, Monge has. 4.
been studltng the development pf.communication structuri in militaiy

organizations: His data come from a naval base located on Tyeasure,,,

Island in in the Sail Francisco ay. Together with his colleagues, Monge,

has been attempting todevejop andlv:lidate causal models relating

%v 1U

C
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several organizational variables to one another. One subset of these

variables contains indices of several network characteristics at

'different levels of analysis. Another important aspect of this work

is the use of more sophisticated-approaches to the measurement of

link, strength: Monge waathe-first to use absolute number of inttr-6-

actions and then total interaction duration, in place of a simple

frequency category system. This work is reported in Monge, Kirste,

and Edwards (1974). One of the networks from this study is used in

the comparisons in the next section.

4. The Naval Studies

Two goals were identified for the research program of Roberts

and O'Reilly: (1) ... to find and adopt a general framework to

guide research in organizational communication " and (2) " ... to

begin to identify communication variables within each observational

level which might be inter-related ultimately and then related to

other important organizational behaviors withinVech level. Across

level relationships might then. be explored profitably" (1975a, p. 2).

Summing up their theoretical rationale, Roberts and O'Reilly say:

Looking back to our framework, and the criteria
adopted for specifying social systems it was npw
necessary. to define communication_ structures which
might later be related to processes; such as per-
ceptions about communication dysfunctions; the
relationships of those perceptions to other responses
such as job satisfaction-and performance; and the
relationship of communication processes to charac-
teristics people bring with them to their jobs,
such as personality, etc. It was also necessary
to examine shifts and stabilities in structure over
time in order to identify organizational regulari-
ties and dynamics ... it was felt that communication
structures should be identified at the individual
group, and organizational levels, before returning
to each level to investigate relationships of struc-
tures to4antecedents and to process responses.
(19753, p. 6)

AI"

7

The resportdents in this study were officers and enlisted per-

sonnel in three high technology military units. Data were collected

219
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three mouths after the units were commissioned and again one year

later. In both phases respondents were given a sociometric survey

which was deigned ,to tap several networks: (1) an expertise network
A

-- "when you need technical advice j doing yo r job who are the

persons you are moat likely to ask?"; (2) a social network -- "with

which persons in this squadron are you most likely to have social

conversations,(not work related) in'the course of a work day?";

'(3) formal authority -- "if you are upset.about something related to

the Navy or to your job, to whom in the squadron are you most likely

to express your dissatisfaction (gripe) formally?" (Roberts and

O'Reilly, 1975a, p. 9).'

Respondents provided the name or a description (later turned

into a name) of the relevant persons appropriate to each question.

Both communication frequency and communication importance were indi-

cated for'each contact. Roberts and O'Reilly 61975a, p. 10)mention

that the recall technique they used cause some problems. They suggest

that a roster-type instrument would give better results, but that this

approach could not be used because of the size of their organization.

Data from the sociometric questions were submitted to the

NEGOPY program for analysis. Results were examined for three kinds

of information: '(1) descriptive communication structure what do

the communication networks look like; (2) relationships among the

various atructural -characteristics; and (3) relationships between

network/structural variables and ,other behavioral and attitudinal

variables. Some of their findings are described in the last section

of this-chapter.

Discussion

Fast, reliable methods of performing network analysis are,

new. There has not yet been enough time to develop complex models

relating network variables to other phenomena. Before this more ad-

vanced work is even begun, it is necessary to become familiar with

communication networks themselves, independent of other considerations.

We agree with Roberts and O'Reilly when they say " communication

4
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structures should be identified at the individual, group,-and organi-

zational levels,"before returning to each level to investigate rela-

tionshps df structures to antecedents and to process responses" (1975a,

p.6, italics added).

In the next section of this chapter, we focus on communica-

tion structures at the different levels suggested both by our theore-

tical perspective (Chapters Three, Foui, and Five) and by Roberts and

O'Reilly, among-others.

One network analysis is clearly not enough to give us the

kind of familiarity with communication networks that-we would like to

hive. In the limited scope of this chapter, hoWever, one network

analysis is almost.too much, as the'details seem to defy attempts to

gain a gestalt understanding of what the system is like. The only

response we can offer is that it must be realized that we are working

with complex multi-leveled information processing systems, and not a

single independent variable-dependent variable pair. Complex systems

hive a disturbing tendency to be complex. It must be realized that,

while parsimony and elegance have a certain attractiveness, they are

not always possible.

With these comments in mind, we move on now to an example

of network analysib using the NEGOPY program. We have made one con-
.

ce'Ssion tothe call for meaning -- we have attempted to put the results

of the sample network (the Melbourne study) into the context provided

by Several other analyses. After the discussion of-structural charac-

teristics in the next section, we attempt to give some idea of the

kind of relationships between network variables and other variables

that have been examined. The descriptions in this last section are

just a sampling of the several studies that have-been done; hoWever,
0

they should serve to give some idea of the nature of this research.

AN EXAMPLE OF NETWORK ANALYSIS: THE MELBWRNESTUDY

1. Background"

In June 1973, the Director of the Deparmtnei-of Agriculture

in Victoria, Australia, authorized a study of the communication networks

2241
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that were operating within the department. This was doneAm order to

"determine the actual patterns of communication that occurred between

the officers who were principally involved in decision making in the

department" (Russel, 1974, p. The;D4partment had offices in
_ .

Melbourne, Burnley, Werribee, Glenormiston, Horsham, Bendigo, Dookie,

and Warragul -- all cities in the State'of Victoria. The st4dx in-

volved 261 professional and administrative officers, each which

was asked to complete a questionnaire dealing with his usual communi-

cation contacts.

Each officer was asked to indicate "which officers he com-

municated with about each topic area, and how frequently he communicated

with thee (Russel, 1974, p. 2). There were four topic areas:

(1) Administration 7- communication about new and current
administrative instructions, policies and procedures,
finance or staff matters, and industrial relations.

(2) Technical Agriculture -- communication about the respond-
ent's own and related fields of agriculture, economics,
food technology; or veterinary science, including com-
munication about technical aspects, interpretation,
farming and farming practices.

(3) Training --'communication about training needs and op-
portunities forthe respondent or other offices, includ-
ing workshops,.conferences, refresher courses, study
tours, and study leave.

(4) Work Planning -- communication aboUt planning and manage-
ment of research or extension projects.

Frequency of 'communication' was divided into the following'

categories:

Os

1 = Usually once a day or more
2 = Usually once or twice a week
3 = Usually once or,twice a month
4 = Usually once or _twice, every three months

Each respondent was provided with a list of all the officers in the

study with places provided for responses for' each of the four topic

areas. All the respondent had to do was write ii' the appropriate

frequency in the proper places'.
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The data reported here are for_the technical agriculture

network, which had the least relationship to the formal hierarchy of

the organization. It was felt that this would give a better idea of

how networks that are free to organize themselves are structured.

2. Structural Analysis

In this section we perform the analysis described in Chapter

Seven. The procedure is straightforward, although the computatfonal

methods are complex.

(a) N, L, and C. We begin with the basic system parameters.

There are 261 nodes and 439 links. This gives a density of0.013,

using Equation #1 (all equations are from Chapter Seven).

(b) 4, Ste, and the distribution of 2.i18. Thenext step is

to examine the distribution of Li's to see if there is more or less,

variance than we would expe6t with a normal distribution of links.

Galculation shows an observed variance, S8, of 11.09. This is greater

than the expected value of 3.32, given by Equation #5. The difference

gives an F of 3.340, which is significant at' p <0.01, with degrees of

° freedom of 260 and 260. Because the variance is greater than expected,,

we use the equations that control for the distribution of Li's in all

further calculations.

(c) ie.L, Tm.i,JELTcuUsing Equation 97, which controls

for the Li's, we calculate the expected number of triangles, Tej, to

be 11. Equation #10 gives a maximum T for this distribution of4Li's

of 847. The observed T was 273. With Equation #12 lIe find this gives

a relative structuring of 0.313, where 0.0 is random chaos and 1.0 is Cit

total constraint. (The values described hdre are shown in Table 1.)

We conclude that.the system is non - random. Therefore, the network will

be examined for differentiated parts.

'3. The Ne)work Analysis

A 1974 vers n of the GNA program was used to analyze the

data reported here. The control parableters of the program'were set as

follows: /
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Table 1

STRUCTURAL ANALYSIS_OF THE MELBOURNE NETWORK

212,

ti EQN#** Value Description

L
..-

439 Number of links

Eli =2L 87.8 Number of directed links

N I
261 Number of nodes

£ 3.364 Mean of L
i
is'

.

C 1 1.29440
-2

System density

C2 1:6414X10 -4 -

Te/Tmax=C3 4 2.166X10-6 -

Te 2 6.3446 Expected T, given Nand L

Tmax 3 2929290 _Maximum T, given N

Ste 5 3.320* Expected variance in ii, given N and L

S2o 6 11.090* ,Observed, variance in Li

TeL 7 10.96 Expected T,given ti's

TM 8 4060 Maximum T, given N and L
4

Tm.i 10 846.67 Maximum T, given 21.18.

To

n=iii

' 273 .

30

Observed number of triangles

Minimuk number of nodes that could
have 431 links

,-----

5 11 0.0658 Structure, given N and L .-

S.1. 12 0.3135 Structdre.,, given N and Li's'

*Observed differs from expected, signifiCant at p<0.01 (F-test, df=260
and 260)

**All equation numbers are'from Chapter Seven.

4
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-- add links to force reciprocation

consIdet links to betnon-directed

213

compute four iterations of vector averaging

a,2 -unit -wide window for scanning in group detection F

-- use a sensitivity ratio 9f 100 in group detection

-- raise raw link'strength values to the third power in
ordef to 1:fOroximati ratio scaling

-- use a 50% criterion for group membership

The Network: Basic Finding

The results of the network analysis are summarized in

Table 2. Some of the numbers there should be pointed out. 77.8%. of

all'261 nodes were participants. This is considerably higher than

the average percentage of the other networks which are compared in

Table 3. 86.8% of the 190 partiCipants were members of 28 groups.

Gross Comparisons With Other Networks

The Melbourne network is compared with seven other networks

in Table 3. Three of those networks came from a divisipn of Chase

Manhattan Bank in New York (CMB) and three came,from a datasetacol-,

lected from regionardistricts of the Office for Civil Defense (OCD).

In each of these organizations, data were collected on three topic

areas: _production, innovation, and maintenance.' "Production" communi-m,

cation is communication about job-related matters. "Innovation" refers'

to communication about Ariges in organizational procedures, and

"Maintenance" refers to sociaj. maintenance? or informal communication.

The 'seventh network was collected from a.naval installation on Treasure

Island.

We proceed now with some comments on the numbers in Table 3.

1. The Number of Non-participants

five of the networks the number of non-participants was

over 50 %. Farace and Johnson (1974) do
/
not explain these high numbers'

in their paper which reports, the data. Wben analyzing networks in the

past, it has been common practice to use the following prdcedure: the
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Table 2

THE BASIC FINDINGS OF THE MELBOURNE STUDY

Non-participants

Number Role
Number of

Links
Links per

Node
% of

Nodes
% of

Non-participants'
23 Isolate Tl 0 0 8.8 32.4
38 Isolate T2 38 ^ 1 14.6 - 53.5
10 Tree Node 22 2 ;2 3.8 j 14.1

,),, 100.073 Total 60 --- 27.2

% .

Participants

Number Role
Number of
Links

Links per
Node

% of
Nodes

% of
Links

:P articip an ts

12 Liaison : 87 7.25 4.6 11.0 6.3
13 Other 48 3.69 5.0 6.06 6.8

25
T
L °

tal

Linker
135 . 5.4

'

9.6 17.0 13.1

113
Non-bridge
group member

.

374 '3.31 43.3 47.2% 59.5

52
Bridge
group member

283 5.44 20.0 35,7

)

27.4

165
Total
group member

657 .3.98 63.2 82.9 86.8

190
Total
-participants

792 . 4.16,L 77.8 100.0 100.0

4

,s2
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BREAKDOWN4OF ALL NETWORKS BY ROLES

Table. 3

PARTICIPANTS: ALL NETWORKS

Participants for each network are broken down. into
4h,Linkers" (liaisons and otherilr: and "B. Group Members." Linkers
are*bdivided into liaisons and others. Group members are subdivided
into non-bridges (no bridge links) and bridges. Under bath "Linkers"
and "Group Members" there is a column of totals. Thlis,.4Under "Linkers"

there arethree columns': "1. Liaisons," "2. Others," and "3. Combined
Liaisons and Others." Under "Group. Members" there are "4. Non-bridge
Members," "5. Bridge MeMbers," and "6.-All Group Members." Column 7
combines linkers and group members. For each column there are' three
numbers: "N" refers to the number of nodes in that category;,"%T"
refers to the percentage of the total network that is in'the cate-
gory; while "%P" is the percentage of participants that is in the
category. For example; in the Melbourne Network, there are 12 liaisons
(column 1), which comprise 4.6% of the total network1nd 6.3% of the
participant's in the network.

The bottom two rows summarize the ta6ie. For example, the
numbers in column-2, row K, shows that, in the eight networks studied,
1.23% °flail nodes, or 50 nodes, were others. While this is 1.23% of
all,nodes, it was 2.8% of participants. Row L, the bottom row,, shows'
averages across all networks. Thus, on the average, 38.7% of all
nodes, or 77.7% of 'participants, were group members. (Information in
rows A,B,C,E,F?G computed from Farace and Johnson, 1974, able 1.)

NON-PARTICIPANTS: ALL NETWORKS

Non-participants for each networiehave been broken down into:
"1. Isolate Ti," :2.iIsolate T2," "3. Isolated Dyads,"-and "4% Tree

column 5 Mg data for all son-participants combined. The last
column, "Network Totalt," has the total number of nodes in the network.
This number is equal to the sum of column 5 in this table` and column 7
in the pa;ticipant half/of this table, Within each-column., "N" is the
number,of nodes in that category; "%T" is the percentage of the total

,network that is in the category; and "%I" is the percentage of non-
\participants that is in the category. For examp4, in row j, column 1,
there are 23 Isolates Tl. This is 8.8% of the total network N, which
is 261. It is also 32.4% of the non-participant population of the
network, which is 7/1.

As in Table 3A and 3B, the bottom rows summarize the table.

I
e-

A .
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Table

A

A. Linkers

10

.

9

4
/ ,

1. Liaisons 2. Others 3. Total
N %T %P 0 %T %P N %T %P

A
B

C

production
CMB Innovation

Maintenance

154
111

69

15.1
11.4

7.1

32.7
34.5

21.2

12

4

12

1.2

0.4
1.2

2.5

1.2

3.7

166

115

81

17:0
11.8

8.3_
12,37

35.3
35.7

24.8
31.9D Average All Chase 111.3 11.4 29.5. 9.33 .933 2.47 120.7

I
F

G

Production
--OCD Innovation

Maintenince

45

24

4

18.8
10.0

1.6

22.2
25.8
6 8

7#

1.

1

2.9
0.4
0.4

3.4
1.1

1.4

52-
25

5

21.7
10.0
2.0'

25.6
26.9
7.2'

H Average all OCD 24.3 10.1 11.3 3 1.2 1.97 27.3 11.2 '19.9
I Treasure Island. 9 5.3 &.5 0 0 5.3- 9.5
J Melbourne , '12 4.6 6.3 13 5.0 6%8 25 9.6 13.
K Sum All Networks 428 10.52 24.2 50 1.23 2.8 478 11.75 27.
L Average All Networks 53.5 9.32 19.75 6.25 1.93- 2.09 59.7 13.91

,
21.1

.

B. Group Members - 7, All
Participants

N %.1

4. Non-bridge . 5. Bridge 6. Total
N XT %P N- %T %P N %T -V

A
B

C

Production
CMB Innovation

Maintenance

229

184
204

23.4

18.9
21.0

,48.7
57.1
62.6

75

24

41

77

2.4
4.2

15.9

7.4

12.6

304

208
245

31.1
21.3
25.2

64.7
64.6
75.1

470
323
32

48.3
33.1
33.5

D Average All Chase 205.7- 21.1
53.1

20.9
23.4

56.1
62.6

53.8
81.2

46.7
24

p l&
8

27.8
10.0
7.5

3.3

11.97
11.8
19.3

11.6

252.3
151
68,

64

25.9
63.1
28.4
26.7

68.1\
74.4
73.1
92.7

373
<263

93
69

38.3
84.8
38.8
28.7

E

F

G

Production,
OCD Innovation

Maintenance

127

50
56

H Average All OCD 77.7 58.3 65.9 16.7 6.93' 14.2 94.3 39.4 '80.1 121.7 50.7
I Treasure Island 7 .4.1 7.3 79 0 46.5 83.1 86 50.6 90.5 95 55.9
J Melbourne 113 43.3 59.5 '52 20.0 27.4 165 63.2 86.8 190 77.8
K Sum All Networks 970 23.85 54.8 321 -7.89 18.1 1291 31.74 73.0 1769 43.50
L Average All Networks 121.2 26.0 54.1 40.1 17.53 23.6 161.4 38.7 77.7 221.1 50.2

,

[contd.)'
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,Table 3'

(contd.I

C. Non-participants
1. Isolate Ti 2. Isolate T2 3. Isolated Dyad

%I
8.7

6.1
6.5

N
274
379

393

%T
28.1
28.9
40.4

%I
54.4

58.3
61.0

N
150

174

151

71.

15.T--

17.8
15.5

%I
29.8
26.8
23.4

N
44

46
42

%T
4.5

4.1
4.3

A
B

C

Production
CMB .Innovation

Maintenance
D Average All Chase 348.7 35.8 57.9 158.1 16.2 26.7 42 4.3 7.1

Production
OCD Innovation

Maintenance

12-

0
93

5.0

37.2

38.9

.33.3

61.0

54.7

21

36

45

8.8
15.1
18.8

58.-3

24.6
26.5

2

8,

16

0.8

3.3

6.6

5.5

5.5

9.4.
Average All OCD 64.7 27.0 39.7 34 14.2 36.5 8.7 3.6 648
Treasure Island 59 34.7 78.6 15 8.8 20.0 0 0
Melbourne 23 8.8 32.4 38

630
14.6
15.5

534
27.4

0

152

0

3.7

0

6.6
Sum All Networks 1322 32.5 57.6

L Average All Networks 165.2 29.0 50.47 78.7 13.2 32.9 19 2.95 5.2
C. Non-participants [contd.]

5. All
Network
Total

.

>

4. Tree Node
N %T %I N %T

A
8

C

Productien
CMB Innovatiaa

Maintenance

35

57

58

3.6

5.8
6.0

6.9

8.8

9.0

503

650

644

51.7
66.6'

66.2

973
973
973

Average All Chase 50
1

13

16

5.1
0.4

5.4

6.6

8.2

2.7
8.9

9.4

599

36

146

170

-61.6

15.0
61.0
70.9

973
239

.-
239
239 .

E
F

G

-'Production -

OCD Innovation
Maintenance

H Average AU. OCD 10 4.1 7.0 117.3 49.0 239
I Treasure Island 1 0.6 1.3 75 44.1 170
J Melbourne 10 3.8 14.1 71 27.2 261,
K Sum All Networks ,191 4.7 8.3 .2295 56.5 4067

Average All Networks 23.9 4.02 7.64 286.8 50.3 508.4
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tirst submission to the computer usually includes all links. With

many petworks, the program produces either a very lar &e number of

hers'-or else one single group to which everyon . Neither

ot ttt se outcomes are considered desirable. In order to obtain results

in which mostcparticipants are members of relatively small, "clean"

,groups, weak links and dnreciprocated links are, dropped from the anal-

ysis. In the cOdrseof dropping these links, which are thought to be

unreliable, many\\nodes are stripped of most or all of their links.

This is probablythe reason there are so many,non-participants in these

networks. Until 'the data collection methods are carefully studied, it

will not be possible to understand the implications ofdropping sneak

and unre'ciprocated links.*

The Melbourne network had only 27% non-participants, whichis

the second-lowest percentage of all the networks compared, here. None-

theless, it seems surprising that this many individuals would be so

isolated from the rest of the system. The data that are available give

no clues that could suggest why-so many nodes are non-participants.

2. The Number of Liaisonsand Others

Only 6.3% of participants in the Melbourne network were liai-

sons. This can be compared to the much higher percentage of the Chage

networks (average = 29.5%), the OCD networks (average = 18.3%), and,

to a lesser extent, the Treasure Island network (average = 9.5%).
.

*Farice and Johnson (1974) report breakdowns. by percentage of all roles
in their networks. Because so many non-participants,were found,in
their networks it was felt that it would be useful to report break-
downs of linkers,and'group members as percentages'of participants,
rather than as percentages of thewhole network. When this is done,
the variation in percentages within roles across networks is much
lower; as can be seen in Table 3. FOr example, group members com-
prise 'froth 21.3% to 63.2 %' of all nodes, but only 64.7% to 92% of par-

.

ticipants.

Throughout the discussion of this chapter, most percentages
and comparisons are made in terms of the number of participants or
the number of participant-participant links. To insure clarity, how-
ever, it will always be noted which context is being used; unless it
is obvious:

a

I.
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'inis difference ,is probably due to the fact that the individuals in the

Melbourne system work in geographically separate areas, while both the '-

.

Chase and UCD networks were from organizations that were totally con-

tained in single locations'.

3. The Number of Group Members

The proportion of nodes belonging two groups was higher in

the Melbourne network (63.2% of all nodes) than in any other. With

the exception of the OCD production network and the Treasure Island

network (50.6%) no other network even comes 'close: These numbers

should be qualified, however, with an awareness oflthe numbers of non-
.

participants in the tither networks. When proportions are calculated
s.

for participants only, the differences between highs and lows are much

smaller. Here, 86.8% of Melbourne participants we4e members of groups,

with the Chase networks averaging 68.,1% and the0CD networks averaging

80.1%.

4. The Number of Bridges and Non-bridges

In both the Chase and OCD networks, most group mvbers did

not have bridge links to members of other groups. In most cases only

one group member in five had any bridge link44-In the Melbourne net-,,-

wor, the ratio of non-bridge to bridge was about two to one. In other

words, one out.of every three group membeirs had bridge links to other
10

groups.

The Individuals -in the Network and Their Links

In this section we describe the individuals,in the network,

in terms of their'Tinkage patterns. We begin with Table'4, which

sh64Ws.how many links each type of participant has. Froul this table

it can be Seen that role types differ markedly along is dimension.

Liaisons have the most, followed by group members with bridge links

and then group members who do not have bridge links.

Table 5'shows a similar comparison of roles across several

networks. The main difference between the Melbourne network and the
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Table 4

. THE MELAURNENETWORK:
THE, LINKS OF/PARTICIPANTS

. 220

> .

Number of Links by Roles: Participants 1
'

.

Grand
Total
Links

Group ers
t.

''<Linkers

Non- bridje ridge' Total Liaison her Total
A Number 374 283 W 87 48 115 792
B Percent 47.2 '-`35.7 82.9 11.0 6.06 17.0

15:4
100.0
4.168'C Per node ' 3.31 5.44 3.98 .7.25 3.69

D # of nodes 113 52 165 as.
*--6"-h'.6.84

43 5 190
E E 2; links. 59.47 27.37 86.84., 'A. 16 100.0r
F E # links 4471 . 216 688 50 '54 104 792
G 1 S.D. 1.294 2.951e A201. 3.886 2.1 7-3.594 2.482,

I

Row A shows number of links brok4n by role category.
Row,B shows prOportionAf total links category.
Row-8.4lows mean number of links per node by category.
Row D shows the numberof nodes in-each category.
Row E has the expecte iiroport49if of total' links in t

category, assuring even datribiutqn across ail dodesr.
in network.

-Row F'shows expected number 41 links by category.
Row G shows S.D. of ti's for nodes in daihcategoryt

"0.

Its

rt

4,

*.
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Table .5

MEAN NUMBER OF LINKS BY ROLES ACROSS NETWORKS

0

to

.0
a

O.
0
0

A
B

C

D

E

F

G

H

Chase Production
Chase Innovation
-Chase Maintenance
OCD Production
OCD Igimovation

OCD Maintenance
sMelliourne

'Average by NetWorks
Average'by Nodes

*Including non-participants

2.34

2.32
2.24
2.00
2.30
2.37
2.35
2.27

2.31

5.33
4.25
3.92
6.28
5.00
2.00
7.25
4.86
4.91

3.69

3.54
3.06

4.71

3.71
4.25

3.69

3.81

3.68

5.21
4.22

3.79,
6.07

4.95
2.45

5.40
4.58
4.78"

3.86

3.28
3.52
4.62
3.18
3.35
3.31
3.59
3.65

This table compares the seven networks on the basis of
of node had. Row H shciws the average,numbers,by networks. That
Column 1, the numbers in Rows A through G were summed and divided
give larger networks greater weight.

Row I contadns average's by node. Here, larger networks
node, regardless of network size, counted equally in the calculat
differences between Rowe H and I.

2 3 3.
5

74

5.36
4.87

4.17
6.12

1.44
4.00
5.44
4.49
4.86

4.23

3.46

3.63
4.86

2.712

1.41
3.98
4.04

3.89

2.26--

1.52
1.52
4.23
1.70
1.41
3.3.6

2.29
2.00

4.58
3.73
3%67
4.17
3.32
3.36
4.168
4,000
4.14

the" number of linkseach kind
is, to get the 2.27 in Row H,13001A.
by 7. This average does' not--

were weighted more so that each
ion. Notice that there are slight
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others is in the number of links the liaisons have. This might be

explained by the physical differenCes in the structure of the organ1-%.

zation -- the Melbourne system is scattered aboUt a large geographical'`,,

area, where all the other systems are located iu single buildings.

Liaisons would seem vibe more important in holding the system together

in the.scattered system.

A slightly more deteiled,analysis is shown in Table 6,

where the roles of both members of each linked pair have been counted.

Points to notice include the following: (a) 792, or 90r of the total

of 878 links, were between participants; (b) 516, or 652 of these 792

links, were within-group links; (c) all but 43 of the remaining 184

links connected either groups to other groups or groups to liaisons-
. -

or others; and (d) most of the connections between groups were direct,

without the intervention of liaisons or others.

TheGroupi in the Network

In this section we look at groups as units in themselves,

rather than at their-members or the links of their members.

L. How many and How Large

IA Table 7 the group structure of the Melbourne network is

compared to that of the Chase and OCD networks. It is clear from the

numbers, there that the Melbourne' network, with a mean group size of

5.89 and a mean group density of OAS, does not differ appreciably

from the other networkA.

Although these figures seem to indicate the stability of

. group sizes across systems, the validity,of.the'stability cannot go

unquestioned. We described earlier 1k this chapter the procedure

used by invsstigatots to obtain "good" results: ithe number of

others is too high or the number of groups too low, weak and unreci-

procated links will bedropped until a "desirable" structural portrait

of the'system is obtained. If groups are either too few or too large,

the data and the computer program will'be manipulated until a "satis-
.

factory" result is obtained. Thus, it is not clear whether the
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Table 6,

CROSS-ROLE CONNECTIONS
THE MELBOURNE NETWORK: BREAKDOWN OF ALL LINKS BY ROLES

0

0

0

14

a
0

?-1
13

0

S

O 3

HO Z
0

Number

% of Total

%).of Column K

516 72 57 12

58.8 8.2 6.5 '1.4

65.1 9.1 7.2 1.5

657

74.8

82.9

87

9.9

11.0

20

2.3

2.5

48 792

5.5 90.2

6.1 100.0

878

100*

*The percentages do not add by to 100 because links "to,non-participants are not included.

The top row shows the number of links in each category. The middle row shows whatproportion of the total linkage each category accounts for, and the bottom shows what proportiof links between partidipants each category accounts for.

4
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Table 7

CROSS - NETWORK COMPARISON OF GROUP STRUCTURE

224

Network
Number,

. of ,

Grows

Number of
Individuals
In Groups

Mean
Size,

.

Range S.D.

Mean
Group

Density*

Mean
D

Chase Prod. 46.
o

.103- 6.58 3/18 3,31' 0.644 1.472

Chase Innov. 39 208 5.33 3/11 2.62 0.691 1.377

Chase Maiht. 44 245 5.57 3/18 2.90 0.683 1.393

OCD Prod. 17' 151 8.88 3/18 5.47 0.620 1.471

OQD Innov. 13 68 ' 5.23 3/9, 2.04 0.702 1.385

CD Maint. 9 64 7.11 3/11 2.76 0.534 1.735

Melbourne 28 165 5.89 34 3.18 0.653 1.443

Navy
Expertise

27 272
_ ,

10.1 3/* * 0.50

Navy i

ExPertise
--44 407 9.3 3/* * ' 0.57

4
*

$

Navy
Social

16 162
,

10.1 1/* * 0.60 *
-a

Navy
-Social

38 415 10.9 3/* * 0.53 *

Navy
Authority

12 85 7.1 3/* ,' * 0.51 *

Navy
Authority

30 275
_
9.2 3/* *

,
0.44
-

*

*Data not-available.

23G
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stability in group sizes is a real finding or an artifact of the

analytical proceuures used to understand the data.

2. Links in Groups

Most of the links of group members are with other group mem-

bers. The.remaining links are divided almost evenly between links

with other groups and links with liaisons and others. The typicil

group has about, four linkstying, it to the rest of the network -- two

with other groups and, two with 'liaisons.

3. Group Size, Group Density, and 75
4

While information about how the groups are related to other

groups is iiportantYit tells us nothing about linkage patterns within

groups. To get this kind of information we need to shift our focus

from the members of.groupe and their links to groups themselves.
(

Thii -

has been done for'thenumbers plotted in Figures 1, 2, and 3. These

plots show the relationships between group density, group size,.and

the mean distance from anyimember in the group to any other Member.

We begin with Figure 1, which plots group size againstg7up

density. The relationship is clear: as group size increases, density

decreases. This is.not an unexpected finding -- the larger'the group

is, the more people there are for each person to be linked with'. Since

people are limited in the number of relationships they can sustain,

they necessarily limit the number of links they have. Thus, it would

be expected that in large groups the density would be lower than in

small groups.

The numbers plotted in Figures 2 and 3,are based partly on

the distance matrix for each group.* Figure2 shows a plot of group

*In the, distance matrix the entry in row i, column j is the number of
steep in the shortest path from node I to node J. TAus,,a direct
link would be represented as a "1" in the distance matrix. A connec-'
tion through one intermediary would be a"2" and so On. If the numbers
in row i are averaged, the result is the mean number of steps it takes x.

tt, reach any person in the group from node I. If all the row averages
are themselves averaged, the result will be the group mean distance,
D, which is the average distance frot any member of the group to any
other member. [Footnote continued on page ,229.]

37
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Figure 1

THE RELATION BETWEEN GROUP SIZE AND GROUP DENSITY
IN THE MELBOURNE NETWORK

1.0

0.9

0.8

c. 0.7

m 0.6

= 0.5

o U.4
1.4

LI 0.3

0.2

0.1

6.41

\.

Nes

Nes
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Figure 2
_

THE'RELATION BETWEEN GROUP SIZE AND i5
FOR ALL GROUPS' IN THE MELBOURNE STUDY
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size against D, the average distance from any member of the grOop to

any other member. The relationship observed here ilroughly the op-
,

polite of the one shown in Figure 1; where group density was ptotted-

again# group size. /Again', the relationship is not unexpected. The

rationale here is the same one that led u* to expect an inverse rela-

tion between group size and group density;

In Figure 3, D is, plotted against grOup density. The small -

numbers next to the points refer, to group size. A close examination of

the plot will show that groups are roughly ordered by size along both
4 ,4

axes of the plot, showing how group size is related to both density

and E .

4. Outside -group C9pnections -4/

A relationship that is of interest is the nature of the nodes

whicn connect the group to the rest of the system. We have already com-

pared bridge group members with non-bridges, in terms of number of

nks. We might also ask if nodes that haves connections outside the

group are closer* (in terms of path length) to the rest of the group

[Footnote continued from page 225.]'
If links are non-directed (symmetrical), the distance matrix

will be symmetrical, and row means 141,1.1 equal column means. However,
if links are directed (asymmetrical), rows will not necessarily equal
columns. In this case, the mean of the entries in row will be the
average number of steps it takes node I to reach all the other group
members. The column meanfor node rwill be the average number of
stepd it takes for all the otherkmembers to reach node I.

*The distance a node is from the rest Of the group will vary as group
size varies. To get an index of distafiee'toothe rest of the group
that is free of contamination by group size, it was necessary to con-
struct an index that was defined in terms relative to the other mem-
ber's of the same group. The index that was used in'Figure 4 was cal-
culated by dividing the average distnace from the node to other members
by the overall group mean, D. This gives a ratio that has a value of
1.0 when the node is the same distance as the group average, a value
greater than 1.0 if the-node is farther'away, and'a value smaller than
1.0 if the node is closer. For example, a distance rat...o of 0.5 means
that the distance from this node to the other group members'is only
half the average distance for the group. This value is insensitive
to group size, and takes into account:vartations in group density as
well.

24.

A

411,

nal



www.manaraa.com

230

ti,dn noces.wo6 do no.t have 'outside connections. Figure 4 shows-a,.

comparison ,of nodes having one, two, three, four, and five connections

outside the group.

N
As Figure shows, the nodes with on,e outside-group link

have distance ratios that statt r over a range from 0.6'to 1.4, The
4,

mean of these ratios 0.99 - a value less then -7\1:0, but slot very

convincing, given the variance of the distributibn. This is roughly -

the same thing that is observed for nodes having two outside links.

Nodes having three, four, fiye, or more outside links, however, have

distance/ratios that are oansiderably smaller. The more outside-group

links there are, in fact: the lower is the distance ratio and the more '\

consistent is the ielationship. It would, then, seem that groups are

structured'in such a way that nodes having wide access to the rest of

the network are closer to other group members than to nodes without such access.

This finding must be qualified, however, because it iS

sibie that the refat,icT is spu4-66;. It might be tha &the noaes WIth '

many outside links are also the ones.with many within-grodp links. If
ei

4ata were available from a greater number of groups, it.would be
.4

prac-
../

$

tical to attempt tgokpartial out the effects of number of links in some

way that would allow the questi4of'closeness to,be answered with

less equivoCation. task Will be deferred to anothertime.

The System

In this section we shift our level of analysis to the whole

system: Here we look at the system as composed of groups of indivi-

sthat connect those groups

a,ir of groups was considered .

age link between numbers,of

d the same liaison or

duals, together with the persona

in the organization. For°this analySis

to be linked if either (a) there w

the two groups, or (b) YOTR-groups

other.

The results ofIthe stiuctu

Because the variance in the number

analysis are shown in Table 8

11,4s to each group was sigtifi-

candy greater than the expected varirce, Structural calculation's'

were done with the equations that contra for the distribution of links.

4'
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Figure 4

THE RELATION BETWEEN DISTANCE TO OTHER GROUP MEMBERS
AND NUMBER OF OUTSIDE-GROUP LINKS

1.50
1:45
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24'

LJ rs Lowrr.) v.J 1=)
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SD...1385 SD=.2585 SD=.136 SD=.005 SD=.011*2

'Number of Outside Group Links

In this plot, the values on the ordinate wers calculated by
dividing the mean distance from the node to all otheenodes by the
overall distance for the group. If the node is closer to the other
group members than all other group members, the,xesultof the ratio
will be less than 1.0. If the node is ap far as the other nodes in
the group, the ratio will be 1.0. If the node is farther than the
other group meMbers, the ratio will be -greater than 1.0.

Eacg small line represents the distance ratio for one node.

The thick bars represent the mean distance ratio for all the
nodes having each number of outside-group links.

For example, of the nodes having three outside-group links,
the ratio of the distances from those,nodes to other group members
and the overall group mean distance averaged 0.94.
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Table 8

STRUCTURAL ANALYSIS OF THE MELBOURNE NETWORK
USING GROUPS INSTEAD, OF NODES.

4,-

EQN#** Value
\

' Description

4 L , 69 Number'b ofqinks 1

N 28 Number of groups

C 1 .18254 System density

. ,
C2 . '.03332

--,
--

.

.:

4 . 0608235

I 86 Me of L
i
's

..

S20 6 9:19c49* Observed variance in Li ,

Ste 5 4.029* Expected variance in Li, giNgn N and L

To 53 Observed number of triangles

Te 2 19.92536 'Expected T, given Nand 1,

TeL 7 25.008 Expected T, given Li's

,.. Tm 8 205.258- Maxhnum T, given N and L

Tmax 'i 3276 Maximum T, given N )

Tm./ 10 137 Maximum T, given 1. 's ,

S.t 12 r .25 Structure , given N and i
i
's '

N .

S 11 .178 Structure, given N and L

*Observed differs from expected, significant at p<0.01 (F -test, df=260
and 260).

**All equatiOn numbers'are from chapter Seven.

z
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The results indicate higher structuring than Would be expected by a

random model; ,the conclusion is that the groups are organized in some

non-random manner?*

A " ogram" was drawn for the system, up,ing the criteria )

for linkage outl)ned above. It was riot possible tOsItiscern any difl-

ferentiationlinto groups of groups from this graph, which is shown,

in Figure 5."

THE PURSUIT OF MEANING: RELATING NETWORK VARIABLES TO OTHER VARIABLES

While a familiarity with network characteristics is a neces-

sary starting point, it-is not, in itself, very satisfying. A more

complete kind of understanding is gained by relating structural charac-

teristics with other kinds of phenomena. In fatt, it almost seems as

if the only meanilli-EHAv-elfi-be attached to network characteristics Is

meaning drawn from this additional kind of information. -In this sec-

tion we discuss three different approaches toward this greater under-

standing. The first compares networks Lir different types of communi-

cation and at different p9itte. in time foi a single organization.
0

,

The second examines some hypothesized antecedent and consequent_

-variables of participation or isoltation in networks. The third assumes

group structure to be the antecedent variable and examined its impact

on the attitudes of group members.
. _4

1. Structural Stability

Thtp study was done by Roberts and O'Reilly (1975a'). (All .

references in this section are to those investigators.) They claim

taal there has been little research the area of job-relevant

*There is a potential problem with this analysis in the way,liaisOn
and other links between groups were counted. Whenever two groups
would each have links to'the same liaison or other, they were mon-.
sidered to be linked. This would inflate the number of-triangles
by putting a link there even if no information were exchanged through
the channel provided 4ty the liaisOn or ether. Although the proce-
dure used is not Ideal, it i.s*the only one available at the time.

243
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Figure 5

A "SOCIOGRAM" FOR TILE GROUPS 1 THE. MELBOURNE NETWORK,,

° DRAWM FROM. THE MATRIX SHOWN IN FIGURE 10
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correlates of differential individual communication role occupancy in

organizations. Groups areimpst frequently described in terms of their

size and-the degree to which they are internally connected. There are

no' descriptions in the organizational literature of differential 'size

and density of groups which develop for different content reasons.

There is no indication, for example, that groups for a social network

will be larger or smaller than groups .for an expertise or an authority, A

network (pp. 7-8). There is also little in the way of research on

the,Stability of network structure over time.

The rationale, method, and subjects used in this study ,

were described in an earlier section of this chapter. The relevant

results are shown in Tables 9 through 13, and discussed in the follow-

ing paragraphs.

Role occupation across time and content. Table 9 shows

a breakdown of the members of this system into participants and isq;

lates for the six networks. These numbers, can be compared to the cor-

responding numbers for the Chase networks, the OCD networks,,and the

Melbourne network, w ich are. also shown in Table 9. It Is clear from

this table that they is more variability in thE'Naval networks than

in the others. Where the percentage of participants that were members

of grpups in the other networks ranged.from 64% to 90%, in the Naval

networks the range was from 25% to 100%. It is likeli that this dif-
,

ference id due to differences in data collection procedukes used by the

investigators. Roberts and O'Reilly report a response rate of only

81%; the response rate in the other studies was always close to 95%. ,

Another difference is in the way the sociometric questions were worded.

While the studies all used slight variations on the "Who do yot
talk with about ". question, Roberts and d!..Reilly.had only *

one question that was comparable (the4s6cial network question). Their,

other two-questions differed in-tyo ways. The expertise question*

+tasks for sources of information, and is clearly'dire tional. The

*"When you need technical advice in doing your job,who are the
,

persons you are most likely to ask?

24
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Table 9

t

COMPARISON OF PARTICIPANT, AND
ISOLATE PROPORTIONS OF 14 NETWORKS

236

.

Network
.

Participant Non-participant
.

Group Membership

Expertise -1 80.3% 19.7% 34.0% ' 42.3;
Social 1 80.4% 19.6% 20.2% 25.1%

_

Navy
Authority 1 42.1% 57.9% 10.6% 25.3%
Expertise 2 73.4%bp Z6.6% 56.1% 76.5%
Social 2. 72.2% 27.8% '57,2% 79.4%
Authority 2 38.0% 62.0% 38.0% 10.0%

oN Production 48.3% 51.7% 31:1% 64.7%
Chase 'innovation , .33.1% '66.6% 21.3%- 64.6%

Maintenance4 33.5Z. --, 66.2% . 25.2% 75.1%
Production . 84.8% 15.0% ' 63.1% 74.4% ,

OCD Innovation 38.8% " 61.0% 38.4% 73.1%
Maintenance 28.7% 70.9% 26.7% 92.7%

Melbourne '!" . 77.8%' /7.2% 63.2% 86.8%
Treasure Islpnd 55.9% - 44.1% 50.6% 90.5Z

%T g ,TT %T ZP

ft.

%T indicates that the proportions are a percentage of the total number
of nodes in the network.

%I' indicates that the proportions are a percentage of the number of
participant nodes in the network. .

.1
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authority question* is ambiguous as to direction -- it could mean

either to whom do you'complain (upwards) or to whom do you speak to

rectify the situation (downwards).

' , A further difference that is related to the kinds of ques-

tions is he type df group structure that would be expected. Whereas

the questions used by the investigators of the other studies all asked

aboutcbmmunication concerning the sort of information thaf could flow

horizontally through the network, both the expertise and authority

questions in the Naval studies asked about information that would be

expected to move ve catty in a hierarchical network. One would

expect. groups in a horizontal network, --but not in a vertical one.

These problems all make comparisons between the different systems

tenuous at best and invalid at worst.

In spite of the4arge differences noted aboVe, the groups

found in the Naval networks were surprisingly similar to'those of the

other'networks. The figures were already shown in Table 7.. The lower

densities in the Naval groups are possibly due to.the lower response.

rate of these studies. The stability of group sizes and densities

across networks and across content areas is striking. Given the num-

ber of systems and their variety, it seems safe to make the general

statement that groups tend to have between six and ten members, re-

gardlessgardless of the topic r type of network.

Tables 10 and 11 allow a more powerful kind of statement to

be made about structural stability. In Table' 10, nodes were,compared

at two different times on the basiS of their role in the network. .In

both the expertise and social networks over 70% of all nodes retained

the same role at Time 2 that they had at Time t. Table 11 shows

similar comparits between the different networks at one time.
,

Given the stability figures for the networks that had the

measurement problems discussed above, it would betibteresting to see

what the same figures would look like when the problems were avoided.

It would seem likely that stability would be higher in amore reliable.

*"If you are upset about something related to the Navy or to your job,
to whom in the°6quadton are you most likely to express your dissatis-
faction (gripe) formally?"

249
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Table 10

COMPARISON OF ROLES ACROSS TIME WITHIN
NETWORK: THE NAVAL NETWORKS

(

Network ,Role* Time 1 Time
i

2 Stability of Role.

Expertise

/

P 8 0.3%
76.0%I 19.7Z , lts.ta

Social
.

e 80.4% /2.2Z
71.0%I 19.6% 27.8%

Authority
P 42.1% 38.0%

'59.0%
. I 62.0%

* P 3. Participant

r = Now;participant,

Time,1

S-

A

E

Table 11

STABILITY ACROSS CONTENT AND TIME:
THE NAVAL NETWORKS

S . A

76.0% 81.9% 61.5%

80.4% 71.0% 60.0%

59.6%\, 58.7% 59.0%

E = Expertise
S = Social
A = Authority,

238

The ercentages below the
diagona are time 1 com-
parisons etween different
content networks.

Time 2 comparisons are above
the diagonal.

The percentages on the
diagonal are cross-time

stabilities within content.
Note the relatively low
entries for all comparisons
involving authority networks.
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situation. If this were the case, the findings would have significant

implications for managers 9( organizations who are concerned with the

flow-of information through the system.

2. Antecedents and 0Onsequences of Network Role

This stud, was also conducted by Roberts and O'Reilly, using

a combination of the network data discussed above and additional demo-

graphic and attitulinal data as well (this and all further references

in this section are to Roberts and O'Reilly, 1975b). In a folio -up

of their analysis of structure, the investigators examinedi"sets

demographic and intrinsic characteristics p1ebple bring with them to

their jobs" to see if these "are related to communication role

, occupancy" (p. 1). Communication role occupancy waso(operationalized

as either isolation or participation in the communiCatiodnetwo4k. The

role variable was also examined in relation to a set of individual

responses thought to be "important in terms of organizational viability."
-iv

Besides the' network instrument, respondents were asked to

complete a survey instrument containing demographic. questions and a

series of queStions concerned with their perceptions and feelings about

various aspects of their work environments. The d43grahic variables ,

assessed were rank and tenure in the organization, population size of

community in which-the respondent was raised, amount.of education, age,

and tenure in the Navy. -The instruments used to measure the percep-

tions'and feelings about work environments are described in Roberts and

O'Reilly (1975b, pp. 11-12)..
-4

Discriminant function analyses were used to differentiate

isolates and participants across the three networks for the two,..sets

of antecedent variables (demographics and intrinsic characteristics)

and two sets of response variables (satisfaction and perceived communi-

cation).

(a) Results. The results of the discriminant functions

were SignificAnt for'both the social and expertise networks, In the

expertise network, participants perceived that various communication .

modalities were used and that
t

they' (the participants) 'received
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edunuant information, rsolates had an increased tendency to deliber7

ately withhold information and report lower satisfaction with communi-
,

4 cation in general.

In the social network participants agfin felt, they received
:

redundant informatiOn.' .They also hada tendency to summarize to in-

sure transmission of Important information. Isolates perceived more

use of'written and telephOne than did.partiCipants.

A general concludion was that participation in communication

is associated with perceptions of increased information flow, more

redundancy, and greater overall satisfaction with communication.

There were no significant differences in coommitment to the organiia-

tion.between isolates and participdis'in either the social or the

. authority networks. .However, participants in the expertise network

were significantly more committed to the Navy than were isolates.

Differences in role occupancy and performance were observed

with all networks. Participation in communication networks is asso-

iated with higher performance than is -isolation. This difference is

greatest for the expertise networks:

The general hypothesis was confirmed,. Differential role oc-

cupancy is reflected in, both antecedent and consequent conditions.

Participation is generally associated with positive outcomes. Overall

the pictufe is one of dysfunctional aspects for individuals who are

not integrated into organizationat communication networks.

3, The Impact of Group Structure on Attitudinal Configurations

Taylor (19'76) took a slightly diffetent approach in his study

of the effects of group membership on the attitudes of the 'people in

a network. He derived a theoreticak rationale for the assumption that

shared communication leads to a convergence of attitude/from a general

theory of attitude change provided by'Woelfel and Saltiel(l9T,5):

This theory states that the attitudes a person has are a function of

all the messages the person has received about the particular topics

of interest:.
0

252
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IThe] consequent attitude a is the linear sum of
the messages divided by the number n of messages
.... Each message,. xi, is postulated-..to be a force.

'which pulls tehe attitude in one direction or
ariOther --(Attitude change, then, is actually
treated as-a simple quantitative function of the
number of messages an individual has, received
about a given attitude- object. (Taylor, p. 19, 1,976)

24:

Taylor hypothesized that communication groups would be more

homogeneOulwithirespect to a set of work-felated attitudes than

would.non-group'organizational members; that groups would differ from

one another with respect tb a set of work-related attitudes; that

greater within-group connectedness would be associated with lower

within-group variability on attitudes; that greater integrativeness

would be associated with lower within-group ariability; that greater

connectedness would be associate4 with greoter cohesiveness (1976,

pp. 23-24).

The data employed in this study were collected*from a Midwest

,manufacturing firm of moderate size (about 450 employees). The re-

search was.originally conducted in 1970 as. part of ,aneffort to moni-

tor an ongoing organizational development program, which included the

introduction of a Scanlon Plan some'eighteen years earligi. Taylor

comments that:

It should be stressed that this'organization is
unusually'sensitive to the need for cooperative
or, participative management systems. The result-
ant communication policy may be judged to have
enhanced the amount of communication. (1976, I. 32)

Respondents werhasked to fill out the Inter-CompanyIongi-

tudinal Survey of the InQtitute of Social.Researcho Attitude items

were measured on five-point Likert scales. Twenty-three items were

chosen from the original set of 212,on the basis of a cluster analysis

which showed that the had a higher ability to discriminate between

subjects. The original a lysis of the data-.is described in Heinen

(1972)'. In addition. to the attitudinal items, respondents were asked

f
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to indicate the people with whom they interacted on the job. Content.

area was not restricted.

4 (a) Results. Because's one -way analysis of variance pro-

daced results that were not conclusive, a step-wise discriminant anal-

ysis was performed on the data with hierarchical clustering. This
a

t

ow.

analysis identifies clusters of indiv.iduals on the basis of attitudi-

nal similarities. The hypothesis was that the groups produced by the

discriminant analysis would be the same as.those produced by the net-

work analysis -- demonstrating that the attitudes of the members of a

group are similar to the attitudes of othe members of the-same group

and different from the attitudes ofMembers Ofother groups. Sixty '

percent of individuals, were correctly placed by the discriminant'

analysis. Only 6% would be expected by chance. The finding was sig-

nificant with p<.0001. The other hypotheses were either not supported

or vary weakly supported.

Taylor'concluded that:

The results provide strong support fortst e contention
that communication groups are nolm-providing mech-
anisms. The research demonstrates. that unique con-
stellations of attitudes can reliably recreate the
informal groups detected bythe network. algorithm.
Further', integrativeness and connectedness were
found to be related to the process of the develop-
ment of group normative structure .... The'reeults,
show that members of informal groups feel less
inclined to trust their work team members; less
willing to advocate staying with the work team; less
willing to rate highly the performance of their,
group; and, most importantly, less likely to-see
themselves as substantially important to the produc-
tivity of the team. (Pp. 55-56)

SUMMARY r--

Several uses of network analysis were reviewed. One network

. was exsafted in detail and the results interpreted in the context pro-

vided by the results ofsevers1 other network analyses. To provide

moreme,aning for tie descriptive kinds'of information provided by

network analysis, three studies relating network characteristics to

2 5
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4,other phenomena were reviewed. The firs related characteristics of

networks for different content areas and across two
P
points in time to

obtain data on the stability of communication networks. The second

examined soiIe antecedents and consequences of,communicaticenetwork

variables, and the third related attitudinal inforMation to network

structure.

255
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'INTRODUCTION

We started Chapter One with a look at the basic models that

eep used to structure approacheS to the.study of social systems.

CHAPTER E1,:127 4vo

FURTHER

The first model we woult-Tecognize as taking a "scientific" approach
. ,

was the mechanism--a machine obeying the laws of physics.' ,Thii model,
.

,

was chosen because 4t was successful in other sciences and because it
, ''. 4.

promised .to move the social sciences closer to the more concrete hard .

sciences. °

The fact that`the mech istic bodel,' together with the

clastiical analytic method which Bowed from the assumptions,of the

mechanistic model, was failing to fit the reality of social systems

became, more .and more ,envious as more and. more research'was done using

this approach. At this time, in the early nineteenth century,the
v organismic*model started to grow in popul'arity as a replacement for

the mechanistic approach.

, . Although it opposed the mechanistio-approach, the organismic

method was not noticeably more successful. In this ambiguous context,

both approachei were used, sometimes consciously, and sometimes not
, Ts

(i.e., their assumptions were used, but not stated).' All this time,

though, there was a
t

deep fundamental difference Lathe way the two

models viewed the world. 4 was through this conflict that the sys-
.° tems approach was born.

The fact that the main concept in the systems approach is

., , o anization makes it easy to see Why'Ehe systems approach was first

used in the social sciences by people interested in the organization

of social systems, which were viewed as: communication networks..

.1Wereviewed a number of the methods used t? study organize-
,

tioh in social systems In.ehapter Two, and' found most of, them w

e
ing.

(s,,\The most important'lack, we Said,' was lack of clear conceptua .alit . t

. 244
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foundations. The whole concept of system had not been clearly enough

explicated to allow. formal a1ytic techniques to be drawn up. Fur-

, thermore, the processes of observation and ddscription Am the case of

complex systemS' had not been looked into in sufficient detail to in-

.

dicate.how the relation between observer and system be ng observed

k di pf.information that could be obtained in those situ-

ations. In art Two, we looked into these problems al0 came up with

:a new applac to the study of complex systems.

We deveIqped the model for the general case of complex

multi-leveled systems. We started,with an analysis of the logiCal

form of these systems. There we were interested in exploring the'

logical implicatiohs pf,there being many levels in the System. The

existence of multiple levels turned out to be. centrally important for

a number of different reasons. 'It meant th.at there were logical re-
.

strictions of many different types imposed on the system., These in-

c4Ided restrictions on the way one system could interact with other

system's, on the way the parte:of the system could be related to the

whole system, and on the characteristics of all systems organizedit

hierarchical fashion-. When we examined the processes of description

and observation in complex systems, we found that there were more

implications,oithere.being multiple levels in both the system being',
. ,

observed and,in the obAving.system. ..

.-4.

The procesSes of observatiOrand description turned out to
.

be mach more complex than is generally recognized. Especially complex

is the relation bftween the system being described and the different

levels of descriptiye statements that-can tie made about it: Over and

tr-over again, the concept of levels had to be considered:in? analysis.

The concept cif levels that Played such'a central role could

not be understood withopt recourse, to the more basic concept of con- 4.

straint. Not only Was2Constraint at theleartrbf.organization,, but', A
.

2. ;aA inwas t it the logical core of the process of description. This A.

is whytye spent so much time and energy Eri,ing,to clarify the role of
Q

Constraint in Chapter Five.. .. .
o

Part Three was organiz4On'parallel to Part Two. While the'

beginnings of a conceptual framework were outlined.in ParMw6, the
,-, ,

\ .

(N,
_,F. st,

4

r
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corresponding operational methods were sketched'in in the chapters of ,

Part Three. Much of what was described in those chapters was neces-
.

sarily crude, as it represented only a preliminary outline. Much of

what was described there has not been used enough in carefully, evalu-

ated research to let us know if it works. This is to be expected with

newly developed methods.
. ....4_,...

In Part gour 4e presented somedata.- It was, not nearly .

enoughdata to let us draw any conclufC;ns. That was notthe intent
. ,

of the exercise. Rather,t was carried out to illustrate.the kinds
\

of analyses appropriate in the early'dtages of till wotk of the research

program outlined in the earlier chapters. The numbers reported in

Chapter Ten were not wholly fictitious.- They were drawn from data

sets that were chosen to give some valid impressions about some of the

h acteristics of'themetwork aspects pf the systems we are int(er-

ted in understanding. As it is, the numbers only give some initial

impressions -- they are in no sense comprehensive or complete descrip-

tions. There is a lot more to our research program than network

analysis. 'This additional work is the work of the future.

The State of the Art /FieldlArea

An assesaMent.ofthe strength& and weaknesses of the network

'approich.vill be a useful guide to the direction of.future-work.

Several aspects can be identified for this type of analysis: 'guiding

theory, staeistical.and methodological approaches, and the less inter-

estipg but more concrete research tools, such as data banks -and 'computer

programs.

As anyone whohas actively engaged in network researcI will

testify, the most advanced area is the third one mentioned above. The
4

statistical and methodological foundatiOns,' while not entirely absent,

are not di,,well-developedas the analytic methods.

The least developed .of the three areas is the one that one

would expect to come first -- that of guiding theory., How did this
-

backwards situation come to be?'

In the early stages of work' on the problem of network anal-

ysis, it was easy to identify a specific, concrete need of researchers
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in thesarea. There was no fast easy way of digesting the4Ociomettic

'data collected. in netWork" studies. The situation'was one of a fairly

clearly stated problem where the 14k4Sf-answers seethed to be4hibit--

ing progress in.the general area. Instead of working-on abetter
.

understanding of 6e theoretiCal issues involed,kwe chose to work ,,

on the seemingly tore immediate problem of analytic techniques.

It may be unfortunate tht we,:tOok this course. It is pos- .

sibre'that the hly complek 'and sophisticated EGOPY program will

win out to be a white elephant further advancements in

the very field that ittwas designed to help along. 'It is difficult

to"predict the kinds of needs that will go along witrcet-to-beladvanced

theory; but we attempt to do just thAt in tbvrest of this4thapter. 4

WHERE WE ARE/WHERE WE WANT TO GO "%.
V

AIM

Q.4

The remaining sections of this`ohapter ire organif

04-

now seems to be the correct order. Although hindtight sugges

theory sho5ld ot77 first in research endeavors like ours, it doet'not
0

Areto alWays_be,possible to advance the theories' without having the

kind of understanding that.forays into methodological and analytidal
for areas provide. We hope440will not be+ forced to-backtrack too far.0

We begin the discussion with some comments, on the sorts of theory we

*ought-, to have?tO guide research in the area. From there:we move to a

, focus on .they intermediate issues -- statistical and,methodological-con-
,

siderations that flow from the coupling:of theoretical biasei and prac=

oicaf limitations. Finally,-we turn to the concrete needs of those

'conducting research in the area.

-/

Theory

In the cha pters of Part Two we outlined a paradigm that sug-

gests how we should view dommunicatior networks in complex systems.

The approach we described' there started with an-analysis of-the logi-

cal form Of the/tystems we are interested in. We cpmbined the results

of this analysis with an anelysis'of the processes-Of observation and
-

description to arrive at some statements about-research goals. These

'statements described some-of the characteristics Of networks that

I

.al

4

a.
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, shouldbe important in the study of human communication systems --
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structuring,-differentiation, roles, groups, and so on.
-

All these characteristics are
41A,

endogenous to the netwa:
They are based on diitinctions made between one part of the network

and the rest cokt the network, or between what was observed'an9 what

was possible. A NI .
A theoiy working with only this kind of information would e

be able to mike advances in two directions., First, it would be pos-

sible to make statements l'bout regularities observee-i in a variety of *

situations. This kind of research was repotted in"Chapter Ten, where

we described such glObal phenomena as the "typical liaison" or the

"typical group member" or the "typical' Confidence is. added

tc this kind of statement 14 looking at many netwot&s in many different
tek.

kinds of settings: This was one reason'for the comparisons made be-

tween the'Melbourne gplyork and the others.
..

.

A second kind of statement that can'be made within this kind 7

of theoretical context would be the kind that related some endogenous'

network variables to other endogenous network variables. Here, instead
.... .

of saying he typical gridtp-member has four linkEi;" we would tay,thinks
( ----

like "the more outside -group links a group member. has, the. closer that ,, ........., 4
member is likely to -be to the other membeks?of the group.'' -It 4s pos

sible to make these kinds -of statements with no data other than that

which describes where the links are in the system.

The theoretical pekspective we develOpetmay be adequate, if

we are satisfied with statements like the ones descriiald above. Iftr
t

on the of r hand, we are-interested in seeing,how networks are in- ,

fluenced by other factorl or how other factors are influenced by net-,

works, we need a broader perspectivesdtt we are to progress in a

programmatic fashion, we need a perspectivfthat will suggest whole

familidt of research questions similar to the ones asked by Roberts
tP

and O'Reilly (1975a, b).
11'

Much of the research tah has been done in this direction

illseems to be somewhere betweefi the vel of individual differences and
.system effects. For example, Roberti and O'Reilly were primarily
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interested "I the behaviors and attitudes of persons who were either
0

isolatii441% participants in the network. 'Taylor (197.6) web interested
4

in looking at attitud of persons who were members of groups. Re-
./

search relating properties of networks (i.e., properties of groups or

_properties of sets of groups) to endogenous variables is still rare.

One reason for the scarcity of research relating higher-level

phenomena to exogenous factors,is almost certainly the lack of guiding

theoretical perspectives. It seems that this lack is not likely,to be

dealt With until the regularitie of higher-level aspects of networks
ot . .

are better understood. Thus, the simpler studies relating endogenous
.

- .

variables to other endogenous variables seem likely to be more common

in the near future. As a body of knowledge in this area is built up,
1

-more and more of the more complex studies relating endogehous higher-
, i

level network characteristics to exogenouS factors will be completed.
.

.

-----\
. If we are asked to describe

0

the kinds of theory that are .

likely tdpbe-seen, we can only make the most general statements, since
4

we do not understand even the kinds of-things' the. theory is likely to

relate. (If'we had the theories today,, we_could dispense with the .

--- uninteresting content -free research into-the nature of networks that

makes up much of the work that has been done.) A starting point for

this type of research has been suggested and some studies have been

done. We refer he to studies looking at changes overtime. If

we are interested in dynamic processes, it seems fairly obvious' that

we will include change across time as one of the main concepts.
,

In the static one-point-in-time situation, we can asieserve

some kinds of patterns or organization in/the data. The most we can

do with theie observations is correlate them .with other observations.

We can"make no statements about how things got to-be the way they

are, or how they influence other things around them. This is generally

accepted to be the way science works.

When we include change over tithe, we can observe the sequences
N

and orders of changes. These observations allow causal statements' to

be made concerning the relations between phenomena. Instead of only

being able to describe networks, we can begin to explain why and how

they are the way they are.

0

zir
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Again, there has-been little research in this area. The

reasons for the lack here, however, are different from the reasons

in other treas. The major problem,here is that time- series studies

are considerably more difficult to cilrry out than one-shot studies.

The' observational interventions are likely to be reactive -- systems

do not permit themselves to be studied repeatedly -- and time-series
,

studies are more expensive, as they demand more research assistant

efforts and analytic complexity: They also take longer to do.

8.
Statistical and Methodological Considerations

Closely related to the theoretical issues discussed above are

problems related to statistics and methods.- Four 'problem areas are

discussed here: sampling,measurement, dedCriptive statistics, and

inferential statistics.
t

A theory of sampling for networks'is yet'to be proposed.

Granovatter (1976)'approachesthe problem of sampling for a simple

p
\

easure 9f a bsic'network property -1- density. It is unfortunate

that he chose this measure'to illustrate the prOblem, because-density,

as he operationalizes it, is an individual-level variable, rather than
.

-.
a network variable. The very crudity of the index makes it both essY

to work with from a sampling perspective and of little interest from

a network perspective.
. .

,
. .

.

. .

\,,

, The critical point that Grannovetter -bypasses is that, when
<--- ..

studying networks as networks, the network is the-unit of analysis.

Thus, one would sample networks, rather than individuals. When groups
4

are the unit of analysii, one would sample intact groups -r not indi-

yiduals or networks.
,

r

The problems with this approach are of two types. First,

the statistics required to work'with more-complex indices,AXe 2hOrdi-

nately complex. Second, the actual operationi of sampling --, i.e.,

locating' and elicitit4respoftses 'from networks or grouPs ire yet

to b(worked out, Satisfactor4. 1-C.
.

.
.

, t

262 r
4
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There is a third-problem associated with the intact system

approach: size. Many interesting systems are simply too large to

e s 1e. in oto. t seems t at t ere are at east t ree w

circumventing this problem. One is to divide the whole systei into

subsystems and to sample the subsystems. This would be the approach

taken when a city was divided into neighborhoods and a subset of.the

neighborhoods was sampled for intensive study. The reSults would be

generalized to the rest.of the neighb6rhoeds'in the city. This

method works when the system as a whole can be divided into "clean"

subsystems -- where the division does not do too much violence to

either the subsystems or to the system as a wh9le. In many systems

there are easily recognized subsystems diet Can be sampled in this

way. Chavers' work with school systeini (1976) illustrates this aprbech.

A second approach'to the sampling problem is to use "snow-

ball" techniques,, perhaps starting each chain with a randomly selected

individual. The statistics needed to make estimatesof confidence with

this method are formidable.

Benninger (personal communication) suggests a third method.

He advOcatet dividing the'netwoik into a set of exhaustive and mutually

exclusiVe subsets of individuals. For example, he tight divide San

Francisco inte'professionals, laborers,students, politicians, house-

wives, and criminals (assuming that these are mutually exclusive and

exhaustive)e. He would then sample
07

study their links,-with individuals

information% hey would be ab)s-to Ma

individuals from each'category and

in other categories. With this

ke statements about the way the

individuals in Any one Category relate to the individuals in any other
.

ategory. - This'"sociolbgical' approach does not siiffer from many of
'

. 4

--'. the.probleat plague other schemes, but it provides less informs:-
.. .

..,tion than the oth / A

, 1 \, .

A

I 4Clearly, e area of sampling is wide open and-ready for

some. liatfreaking work. ,

,N W
2. Measurement

.

Closely related tptthl issue Of sampling is the problem of
.t ).measurement. Granovete; (1976) argues that problems with the' recall

,
, ..

t-

263
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method of collecting network. data (see Chapter Six) are a major reason

for developing some kind of sampling technique. His arguaeits apply

more in very large systems where the task of recalling all one s con-

tacts is too large for respondents to handle.

Measurement is not only a problem in vely large systems,

however. Even in moderately 'lame (N*200 to 600) organizations, where
1-

the boundaries of the system' are relatively clear, it'is often diffi-

cult to get respondents to answer the fairly complex kinds,of questions

that must be asked to obtain Use 1. network data. The discriminations

required are complex and.thedat ate thus not terribly reliable.*

Not only;-are the data not that eliable, but also are they not that

informative. It is difficult to get the amount cf information that

might pe dalred when the recall method is used.. Diary methods, which

can provide much more infOrmation,are also more obtrusive and meet

more resistance on the pat of_respondents.

Finally, no studies have been done to clarify the meaning

of some of the scales that have been used to°code relationships in

network studies. .For example, an "importance" scale was used to rate

each contact an individual had in some network studies. Importance

scalei usually run from l'to 5, where 1 is not important and 5 is

someplace on the other end of the continuum (see, Chapter

not clear what kind of scale importance is. It probably is a least

4rdinal,,but is it interval orlratiot Furthermore, do all individuals

have the same meaning for "crucial" or do some consistently overrate

the importance (relative to the otheis), while others underrate it?

. If there are differences among individuals, who are the overand

underraters? Can methods that control for, this be devellped? How

important is the problem?

It seems clear that the, use of sensitive analytic tools

should be tempered with an understanding of just how uncertain the

'information in the data is. This area obviously is awed of more,

work.
.

*Recall the diffidulties with the Roberts and O'Reilly data described
in Chapter Ten. i°

264
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3. Descriptive Statistics
I

,

When working with communication networks from complex systems

it is
,

absolutely necessary to have some way of digesting the massive

amounts of information and producing concise V powerful descriptions
1

of meaningful patterns in the dr. This proceed involves the use of

descriptive'statistical summary statements ttich collapse large =bunts

of data to simple indicators of various characteristics. :No types
,

of work' ed to bi7done in this area. The statistics we have need to
P

es be exrined closely in ayariety of situations to see how they behave,

and now indicatori need to be developed so that more can be said about

. the data we have.

Edwards And Monge (1975.) did an empirical test of therela-

ttgilships among several of the metrics that ,have been used to describe

networks. In their analysis they were looking for sources of common

and unique variance in each of -the metrics. In thig-w they were

able to reject several of the metrics as being redundant or vague, in

terms of the large amount of variance they had in common with other,

more basic, metrics. They were also able to identify metrics which.

shared almost no variance with others. These "unique" metrics were ,

therefore demonstrated to be "clean," and not contaminates by other

factors. More of:this/kind of commonality testing would give 'a clearer

picture of the relationships among the other metrics. By sharpening

our conceptual and' operational terms, this process will ally us to

make better .use 'f existing indicators,- as well as to discover the

empirical "meaning" of any nlw ones,that may be introduced.

The development -of new indicators was mentioned as the other

aspect that needs more effOrt. There are a number of indicators that

are usefut at the individual- level, of analysis. At higher levels thez,

are fewer. If'the higher levels ate to be better understood, we need

more indicatbrs-of different characteristics. One problem with

higher-level indicators, however, is related not to other low-level

indicators but rather to uncertainties in the measfement process. .

'It is not aar, for example, what,a link between two groups would

look,like. Other problems are caused by some, aspects of the relation-.

ships that are not important at low leveli but are crucial at higher

4
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levels. The problem of transitivity is one

this Jostle were better undrstood,4it would

number of group-level and even system-level

available at this time.

Analytic Considerations

254

of these problems.* If

be possible to develop a

indicators that are not

Before the theorieaand statistics that will-be developed

can be put to work, actual techniques 4tr doing this need to be pro-

vided: We have a 'start with the NEGOPY program described in Chapter

Eight. Immediate attention can now be directed in four directions.

1. Improvements i 4 _sting Programs. .

There a e many prOblemi and limitations'of the current NEGOPY

program that must be dealt with.

Ca). The existing program only runs on CDC 600-series

machines. It is imperative that &version compatible with IBM equip-1 1

(b) The existing prograwisemonolithically organized. Fu-
,

ture versions should be modular,-so that more poweful routines can be
o

used without sacrificing Cote to code, and so that analyses can be done

one step at a time -- giving the investigator both greater flex.lbility
a

and greater economy. ,

meat be made available.

(c) Much information produced by the program is not organized

t in a form that makesit readily available: More complete descriptive

,summaries should be included at many points in the analysis. When the

program-is-organized -inmoduldr Eirm, there will be room to include the

code needed for these added features.

(d) The power of the programneeds to be expanded to include

multiple network'or cross-time capabilities. Multiple'network cape-

bilities low several system to be examined at once, with

*See Chapter Six.

26P.;
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comparisons along a number of dimeislons. Cross-time capabilities

would allow changes in one network over time to be'studied and possibly

related Cher, non-network variables. This step will be essential

for theor building, at least as regards the dynamipf. networks.

Inputs to these routines would be the outputs of seve41 of the ear-

lier routines, rather than several raw data sets.

2. Development of Other Programs

While network analysis is an important part of this research

program, it is only a part. As the sophistication of the approach

grows, other types of4analysis will be needed. If the complexity of

these techniques are anything like that of others, computer programs

will be necessary for carrying out any important research. These pro-
.

trams might be based on the logital model for complex systems that

was described in Part Two. Alternatively, they might be based on

dynamic theories of evolution and adaptitill'a'la Ashby (1956).''The

Development of "hese new programs will mark the beginning of another

surge in the advancement of the social sciences.

3. Moving Towards an "NPSSH_SNetwork Package for the Social Sciences)

A majdi step in the development of modern statistical analy-

sis was the presentation of awiidely available package of standardized,

powerful routine? that performs most of the tasks that used to be done

either by hand or bynon-standard one-shot computer programs. ,A:simi-
.

lar package'of rout1es* in the systems/network area would likely have ,

a major impact on the amount,and.quality of research done in the area.
1 .

DISCpSSION

The problems and tasks we ha'e been discussing so far in

this chapter k're all important issues that will have to be Considered

during the next few years. Although they constitute a large research

program, they only make the first. step in the move toward.a mature

science of social systems. In this section we speculate on !ft

*Perhaps a separate package would be less desirable thaa merging of
the two areas.

267
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directions such a science might take. These wander figs go back to the

kinds of things we were discussing in the first and third chapters and

move on from there.

)1

In the intro c%Ory remarks at the beginning we commented

on a radical shift, in ommunication styles that is influpdang most
1

4. 410 i

of the world: ,

4

This shift is fed by the continued devel2pment
and advanCement of new communication technologies.
Thus, for example] easy access to relatively
inexpensive telephone equipment increase the
amount of communication between distant areas
.... As educational levels rise andpolifical
barriers drop, more and more people gain the
ability to interact in the context of the emerg-
ing. world society. Where in the past; local and.
national societies were forced to be independent
of'one another-by a lack of communication faci-
lities, they are now tied together into what is
fast becoming a single integrated network a'
interdependent units, where the, boundaries are
becomdig more and more mere political or economic
considerations, instead'of4natural geographical
ortracial barriers.

./

We commented oh the implications of this increased interdependence,
.

which will include a whole set of new emergent properties.-- both

properties that couldn't exiWt,before the communication ties and pro-

perties that are speeded up so that they become significant factors,

e'leading to new changes that further accelerate the whole process.

S

i

uations in which a.previously 'local event now has effects that

fke the whole world system are becoming more and more frequent and

undeniably important. It is obvious that the addition of more communi-

cation links is changing-the fundamental-nature-of the system.

If we are to survive the turmoil of the coming, years, which

promiies to change the world even more rapidly and dramatically thaa
_ .

;
'

I .

recent, decades, we will have to have a better understanding o! both

the'nature,If the system and the nature of the kinds of changes we

are likely to see. Without this understanding, we can only proceed

blindly, acceptihg whatever Consequences there,are in store for us.

. e
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If we decide to approach the future with models that worked

in,the past, we cannot hope to succeed. The models that worked well

in explaining and predicting a loosely connected and relatively stable

world will not work in a volatile, tightly connected one. When com-

-munication and interaction increase, all theitrocesses of change and

. growth speed up. proportionally.
- ( ,

.
111146 f ,

We described in this disSertation an approach that will move

us closer tb a science of large -pcale social systems. The analysis

presented here is onliPa beginning, hoever; it cannot be expected to

provide even most f the answers. A more, complete analysis would in-

clude many areas nly touched upon here:
_

257
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-- Perhaps most importantly, a highly developed theory and
method for studying change in complex systems. What
kinds of change can be observed? What causes'change?
What are the ekfects of change? How do we speak of
change in quantitative terms? What kinds of change are
good? 'What kinds are undesirable? Can we direct change?
Can we avoid it? What kinds of systems (structures)
change in the right Faye_ Can we alter system structure?
What happens when sytems'disintegrate?

f

-- Theories and methods for approaching complex hierarchical
systems. How doohigher levels come to be? byw do they
influence lower levels.? :How are they influenced, y lower
-levels? Can they be controlled/directed? AWhat happens
when anew level is added to the system? gtw can we.study
these levels? Wha can we do about them? .

.

%
,

--.A theory of social ystem eVoluation. How do complex
social systems evolyebver time? Are there parallels to
biological evolution? Can this evolutionbe guided? If' .

it can, what is the b way .to move? Can we predict the
'direction of future

of present condition fl
.1

onary changes from the basis

-- .Related to social evolution, a theory of,a4aptatio,ant.
survival. How do social systems adaptito their environ-
ment? Are some kinds of'systems inherently more able to

adapt to changed conditions? If we can't direct the con-
ditions, can we direct the ability of the system to'adapt?
Does the system survive in a'ch4nged state? Is social
system survival a desirable thing ?_ What are the'impli-

4

11.
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cations of survival? Can we predict which systems Will
survive? If adaptability insures survival in the short
run, what does it imply in the long run? Are there other
short- term /long -term tradeoffs?

Clearly the development of these theoried and methods is:a

long=termprogram. The possible-implications are unprecedented. We

are at a critical'point at this time. The new w-apprOach to social

systems is in its early stages. It is especially fragile,, and could

easilylbe diverted away from the important long-term issues and to-_,

ward more immediate short-term ones. The'payoffs for doing short4term

research are much more immediate and tangible than' those for long-

range work. This seems to be a danger that must be guarded against

most strongly. Perhaps a compromise can be'reached; where the attrac7

tive immediate applicattrons can be done in such a way that the benefits

can be funnelled back into the research effort in order to advance the

long -range theoretical work.

COgCLUSION

We have here a beginning ....

4



www.manaraa.com

BIBLIOGRAT

Ashby, H.R.'

1956' ..kAn-Introduction to Cybernetics'. New York: Wiley.

Barnett, G.

1)73 "The Nature of Random StuctUres." Michigan State Univer-

. sity, E. Lansiii, Michigan: Unpublished paper.

BarnlUnd, D.C.
1970 "A Transactional Model of Communication." In Sereno,,'K.K.

aid Mortensen', D.C. (eds.), Foundations of Communication

-Theory. New York: Harper & Row. -.Pp. 83-102.

Becker.
1968. "What Rhetoric (Communication Thapry) is Relevant for

Contemporary Speech Communication?" Paper presented at the

Spring Symposium in Speech-Communication.

Berlo, D.K.
1960 The Process of Communication. New York: Holt, Rinehart

& Winston.
Berlo, D.K., Farace, Monge, Betty, and Danowski.

4

1972 An Analysis of the Communication Structup of the'Office
for Civil Defense. Tdchnical Report, E. :-Lansing, Michi-

gan State University, Department'of Communication.,
Beum, C.O. and Brundaf, E.G.
1950 "A Method for Analyzing the Sociomatrix." Sociametry 13:

141-145
Block, R.E. and HL-a-itZ\R,Z. "

1950 'Ad Adaptation of Holzinger's B-coefficient for the
Analysis of Sociometric Data." Sociometry 13 (June):

) 146-153. /
Borgatta, E.G. and Stolz, W.

1963 "A Note on the Computer Program for Rearrangement o
Matrices." Sociometry 26:.391-392.

Breiger, Ronald L.
1976- ','A'Blockmodel Study of a Biomedical Research Network."

American Sociological Review (February).,
1974 "Duality of Persons and Groups." Social Forces 53,2: 181.

Breiger, R.L., Boorman, S. and Arabie, P.
1974 An Algorithm .for Blocking Relational Data with Applica/

tiona to Social Netyork Analysis and-Comparison with
ldimensional Scaling. Technical Report, Stanford
rsity, Institute for Mathematical Studies in the

Sciences'(August). .

Brown,,G.S. , A

1969 Laws of Fame, Great Britain: Alleni& Unwin, Ltd.
Buckley, W..
1967 Sociology andModern Systems Theory. Englewood Cliffs,,

N.J.: Prentice-Hall.

'41

259

rj..
44;

a

C

-a

e

A

ASP

J



www.manaraa.com

Chavers,
19 76

*
260'

oc 1 Stru ure and the Diffusion of innovatioas: A
Network lysis. Unpublished doctbral tisseresition,

4t d University.

1964

Coleman, J.S.
1960 "Elec is

up to 1,0
722-727.

Collins, B.E. and Ra

1

In roduction to Mathematical Sociology. London: Free Press.

and MacRae, D. 4

Processing of Sociometric Data for Groups
Size.". American Sociological Review 25,5:

B.H

1969 ,"Group Stru , Coalitions, Communication
and Power." In , G. and Aronsdns, E.' (eds.), The

Handbook of Socia Psy hology IV (2nd ed.). Reading,

Mass.: Addison-Wesley. Pp. 102-214.
Conrath, D.W.

1973 "Communication Environment
tional Structure." Universi
ResearCh Labs. Working Pap

Dance, F.E.
1967 Human Communication Theo

J.

"Alternative information Theoretic Measures of Television
Messages: An Empirical Tes ." Paper presented to the -

Association for Education Journalism, San Diego.
Deutsch. s,

1968 'tToward a Cybernetic Model of Matt and Society. In Buckley,

W. (ed.), Modern Systems Researchifor the Behavioral
Scientist. Chicago: Aldine. Pp. 387400.

Edwards, J.A. and Monge,
1975 "Descriptive communication Structure Metrics: A Preliminary

Logical and Empirical Analysis." Paper presented to Inter-
national Communication Associatioi, Chicago.

Farace,*(S. and Johnson, D. 4

1974 "A Compafison of Selected Network Characteristics Across
7 Six Organizations." _Paper presented to annual meetings

of International Communication Association, New Orleans.
Festinger, L.
1949 "The 'Analysis of Sociograms-6311g Hatrix Algebra."' Human

...Relations 2: 153-158.

Danowski,
1974

d its Relation to Or iza-
414i

y of Waterloo. Bell rthern

#69. January.'

New York: Holt.

Flament, Q.
.

1963 Applications of Graph Theory to Group Structure. Englewood

- .Cliffs, N.J.: Prentice -Hall.
Forsyth, E. and Katz, L.

1946 . "A Matrix Approach to the Analysis.of Sociometric Data:
rPreliminary Report." Sociometry 9: 340 -347.

., --
, ,

1962 \ Uncertainty and Structure as Psychological Concepts.
''New York: John Wiley & Sons, Inc. .

1

'darner; W.R.

272



www.manaraa.com

261
i . ,

t.

----. t.

Gerard, H. ,_, , .

.1968 ."Units and concepts' f Biology." In' Buckley, W. (eds.), '

Modern Systems Resea '; ch for the Behavioral Scientist.
Chltago: Aldine. .

Prtnovetter, M.
. 1W6 "Nttwork Sampling: Some First Steps." American Journal

of Sociology (in press).
Iliaaraes, L.

., . .
.

1970 Network Analysis: An Approach to the Study of Communication
Systems. Technical Report NO. 12, Project on the Diffusion

,-----< of Innovations in Rural Societies. E. Lansing, Michigan
State University., Department of Communication (mimeograph).

Guttman, L.
1968 "A General, Nonmetric Technique ioi Finding the Sinallest

Coordinate Space for a Configuratiodof Points." Psycho -
metrika

A.D.
33 (December): 469-508.

Hall, D and Fagan, R.E. \,'

1968 "Definition of Systet." In BuEkley, W. (ed.); Modern
A Systems Research for the Behavioral Scientist. Chicago:

Aldine. Pp. 81-92. _

Harary, F.,.Norman, and Cartwright.
-1965 Structural Models:. An Introd *fc tion to the-theory of Directed

Graphs. New York: John Wiley... N.

% . .
.4,

A He'tnen, S.

1972 "The Development of Working Teams in a Complex Organiza- .

tion." Unpublished doctordl dissertation, Michigan State ,..f

-University. - \ ,.

Holzingei,, K.J. and H.H.
11 41 Factor Anal sis: C40:cago: University of Chicago Press.'

Hubbell, C.H.
1965- "An Input -Output Approach to Clique Identification."

Sociometry-28- (December): 377-399. 1

Ilardo, J.A.
.

1973 "Ambiguity Tolerance and Distorted Communication:

e, Sa.

Thera-
peutic

o

peutic Aspect Journal of Communication 2$,4: 371-391
___--\ Jacobson, E. and 'Seash ,

19.51 "Communication. Practices in Complex Organizations." Journal
of Social Issues, 7,3: 28-40.

Jacob, M.A. *
1971 "The Structure and Functions of Internal Communication in

( Three Religious Communities." Unpublished doctoral disser-
z,tation,'Michigr state University, 1971.

Katz, L..
1947 "On the Matrix Analysis of Sociometric Data." Socio*etry

10:233-241.
. 1

Kfuskal, J.B. . 1

1964 "Multidimensional Scaling: A Numerical Method." Psycho -

u i. metrika 29 (June): 115-129.
Lankford, P.

1974 ."Comparative Analysis of Clique Identification Methods.
Sociometry 37: 287-305. 4 ',

. , s ,



www.manaraa.com

110

1.

ant

Lasswell, H.D.

1948 "The Structure and Function of Communications in Society:"
In Bryson L.t(ed.),' The.Communication of Ideas. New York:
Harper & Row. Pp. 37-51.

Lingoes, J.C. and Roskam,
1971 A Mathematical and Empirical Study of-TWo MDS Algoritbia.

Michigan, Mathematical Psychology Program 71-1.
Lorrain, F..and White, H.C.

a

262

1971 "Structural Equivalence of Individuals in Social Networks."
Journal of Mathematical Sociology 1: 49-80.

Luce, D.R. and
1949 "A Met of. Matrix Analysis o uI Structure."

Psychometrika 14: 95-116.
MacDonald, D. .

1970 "Communication Roles and Communication Content in a Bureau-
cratic Setting." Unpublished 'doctoral dissertation,
Department of Communication, HiChigan Stata University,
g. Lansing, Michigan. .

MacRae, D., Jr.
.

4
.

1960 "Direct Factor Analysis of Sociometric Data." Sociometry -
'23 (December): 3607371.

McCroskey, J.C.
1968 An Introduction to Rhetorical Communication. .EngleWoods )

Cliffs, N.J.: Prentice-Hall. - '. .

-,"

McGee, V.
1,968 "The Muly.dmeneional Scaling of N-sets of Similarity,

Measures: A Nonmetric Individual Differences Appraoch."
Multivariate Behavioral lesearch,2 (September): 233-248.

McQuitty, L.L. .

1957 °Elementavy Linkage Analysif for Isolating OrthOgonal and
Oblique Types and Typal Relevanciea." Educational and 4.

Psychological Measurement 17 (September): 209-229.
Miller, G.A.

1968 "What is Information Measurement?" In Buckley, W'. (ed.),
Iliodern SYatemillesearch for the Behiaoral 'scientist. .

ChiCago: Aldine.
Monge, P.R., Kirste, K.K., and Edwards, J.A.

1974 "A CausalModel of the Formation 'of Combunication Structure
in Large Organizations." Paper presented to annual meeting

mon ge.

of International Communication Association. New Orleans.
, i

1973 "Human Communications: The Systems` Perspective." Unpublished
y doctoral dissertatiolorDepartment of Communication, Mich2L .

.

gamState University, E:, Lansing, Michigan.
Moreno, J.L. - .. ,

.

1934'. Who Shail'Survive? Washington, D.C.: Nervoitsband Mental
'.Disease Monograph No.,58. 4 , ' \ 4 .... --;7-,,,,

le"

Morton, A.S. ,

1959' Similarity as,a'Didkinant of Friendships A Multidimensional
O

Study. Yrincet9n: Educational Testing Service.

7 4



www.manaraa.com

263

'I

Nagel, E.
1961 The Structure of Science. New York [Burlingame): lifidurt,

Brace & World, Inc.
. ,

Pattee, A.B. 7-

41973 Hierarchy Theory. New York: Braziller.
Parker, E. 1 4. a

1975 Social-ImNications of Computer /Telecommunications Systems.
Report #16, Program in Information ,T,echnoldffy and Tele-

communications, CenterAfOr Interdisciplinary Research,,
'Stanford University (February).

Porat, M. .

1975 Defining an Information Sector in the U.S. Economy Report
.

#15, Program in Information Technology and Telecommunications,
Center for Inteiasciplinary Researclt, Stanford University
(February)

Proct6i, C.H. and -Loomis, C.P.#
1951 "Analysis of Sociometric Data." In Jahoda, M., gt. al. (eds.),'

Research Methods in Social Relations, Volume II. New York:
Dryden. Pp._ 561 -586.. '7...

s Rapoport; A. .
. -

196t "Foreword. In tuckley, W. (ed.), Modern ,Systems Research
'for the Behaviorar Scientist. Chitago: Aldine. Pp. ,Xiii-:
xxii.

Rialtrds, W.D.
19/r "An Improved, Conceptually Based Method for the Analysis,

of .Coteannication Networks in Large Complex grganizations."
Paper presented to Internationale Communication Association,
Phdenii. :

1974 'Nete(lork Analysis in large Complex Systems: Metric." Paper
presentedto International Communication AssociatkOn, New .
..Orleans.

Roberts,' K. and O'Reilly,'C.' o. ,

'1975a "Organizations 'as CommuniCation StiuctUre;: An Empirical -

theoretical Approach." 'Technical. Report on ONR Researt
- roject. University of Califordi4,,Berieley.

1975,b itommunication ROles in Organizations: Some potential

.
s Antecedents and Consequenced."' lechnital Report on ONR

Reiearch Project.* University of Califirnia,.
Berkeley.

.Roby, 1%B. l'
\ I . .

. .

1968 Sball 6rop Performanc. Chicago: Rand-McNally.
'Rogers, E.M., Park, H.J Chung, K.K., Lee, S.B., Plippa,. W.S and

,.

Doe, B.A. .

1975,- 'Network, Analysis of, the Diffusion of. Family Planning' .

L Innovations Over\Time in KoreanVillages." Paper presented
to. Population Association.of-Americi, Seatile.(April).,

Russeil,, H. , - .

1974 "CommunicattonNetwork.Stndy.6 'Memorandum to bepartmen of
Agiiculture, VictOria, Australia (Octobei 11). . .

' Russell, B. : : t.

. 1971 : .IntrOduction to Mathematical Fhilosophy. NewlYork: Silon-
and Schuster. ,, '#;.'

;.
,

/ .

tN.

.A



www.manaraa.com

s-7

°Shian4n, E.C. and WeiWeisW.
1949

Shepard,

1.9§2a

4

i64

The'Mathemaitcalitheory of Communication.AUebanai Illo
Univerbity of Illinois Frew. ,

i f'

.., . 'V"
it.C.. . Iv,

. -4-.

"The Analysis of Proximitieiic.I." ,Psychometrika 27 (June):'
125-140. .

,

1962b "The Analysis of Proximities, II." Psychometriki 27

. (September): 210-246.
Simani'. .7.

,

,..1 '1973 "the'OrOnization of Complex'Systems." In Pattee (ed.),

A
Hierarchy'Thelry. New$York; Biaziller ..

.

Sladeki J.T. : ,)
.

.1968 Mechasm. 'New Yotk: Ace. .[Original' title: The Reprodutive
TiaTlir

;Taylor ,,," - -,
,

1976 irNormative Referential F'unctibn of Infotmal Grouil in Organi-

zation."
.

Unpublighed'master's thesib, Department of
Communication:- Michigan State University.-

Torgersoni7W.S. t 0
t

.

41911= Theory and Methods of Scaling, New York: ,John Wiley.
, Toulmin, S. and, Goodfield, J. ,

,

1962 ' The Architicture*of-Matter. New York: Harper Sg Row. ''

Tyron, R.C. and Bailey, D.C. ,-"-

(1970 / Cluster Analysis. New York: MarawiHill. '-,

Weiss, R.S.
1,,

.., 'N
-1956 Processes ofOrganizationl.Ann Arbor,,\Mich.:,Institute .

_

for SociarResearch,, University of Michigan. -,
Weiss, R.E. and Jacobson, E.

1955 "A Method for the Analysis-Of the Structure of Comp ex ,
,

Organizations." American SatiOlogical Review 20: 661468.
yestley, B.H.,and MacLean, M. ' - ' 4

' 1957 "A Conceptual Model tor'Gommunication Research:." Journalism
Quarterly'34r 31-38. , .,'

/

White, H.C'. '14 . .

$ 1974a "Models for Interrelated Roles from Multiple Networks in
Sma]4 Populations.", In.Knapp,",.P,J. and Meyer, C.H. (eds.)',

y , .Prodeeqings'of the- Conference on the Application of_
' 'Undergraduate Mathematics in the 'Engineering. Life,

, Managerial, and Social. Sciences. Atlanta:, Georgia Insti .

tute of Technology:
, -

1974b 'Multiple Networks in Small Populationsi :II. Compound,
% ' Relations and Equations." Unpublished paper, Harvard

,' University, Department of Sociology. . .

'1970 , ,Chains,of Opportunity. Caibridge, Mass.: Harvard University
Press. .

1963 An Ane6My of Kinship.' Englewood Cliffs,-N.J.: Prentice-
m Hall.
1061 '_'Management .Conflict and Sociometric Structure." American

Journal of Sociology.0.: 185-199."

e

7,24 4

4

f

r

1

t

I



www.manaraa.com

.

^,

ar

* .

,White, Hoc( afidgreiger,
.vl971 141tiplelietworks

==L Unpublished paper,'

Woelfel.,

197,0,

Woelfel,
1975'

I

.

in,$mall Popplatiags: I. Blockmodels."
Harvard University, Department of

L

265

Sociology.
J.

"Si

of
J.

ciology and Science." Unpublished- paper, University',
ilinbiat Department, of Sociology.

Saltiel,, 3,. . .- ,

tive,P.redesses, as Motion in a Multidmensional Space.
eral Linear Model,." Paper presented to the annual,

meeting of the International Communication Association,
'Chicago' ,

4

a.

5

4

C

ti

r

it

tt



www.manaraa.com

4C7

'APPENDIX:,NEGOPY,' the_NetworkAttal3Nis Program

DocumentatiOn
, .

A:tempi describing the networke\analysis program is available from the
Iqetikute for Communication ReseaccIA,Stanford University, Statiford, CA
94305. The, document is entitled Manual for Network Analysis, Using the

,.NEGOPY Program," The author is William b.kichards, Jr
, , 4.

,)

.There are sections in the manual destcribingithe goals of network Oalysis,
the collection ofdatal'Instrumentation, data preparation, and data

.

analysis. The,algoriAm'upon which the NEGOPY program is based'is desCribed.
The paremetes governing the operation o'f the program4'are discussed,
witth examples showing 7the implications of different options. Finally,

-'for each section, the ou put of.the program is described ,so that it
can be easily interprete he user:

.,
__.

, .
..,-,

.
- __)

I

266

Availability

The NEGOPY program w s written in. CDC FORTRAN EXTUDEr Tite'code is ,.,- \s,
highly machinedepe dent; it runs only on CDC'6000*.series tachines,'" . -'

The program itself occup4.es about 3,000carde in sOurce.version% The
object version Occupies roughly 27K (octal) words of core,460,1ait words):'
Further information about the organization 'or avai4ibility of the
'program can be obtained from William D. Richards, Jr; Institute for

, A

Communicatioaliesearch, 'Stanford University, Stanford, CA 94605. ,

'
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